11 research outputs found

    Attention Networks in ADHD Adults after Working Memory Training with a Dual n-Back Task

    Get PDF
    Patients affected by Attention-Deficit/Hyperactivity Disorder (ADHD) are characterized by impaired executive functioning and/or attention deficits. Our study aim is to determine whether the outcomes measured by the Attention Network Task (ANT), i.e., the reaction times (RTs) to specific target and cue conditions and alerting, orienting, and conflict (or executive control) effects are affected by cognitive training with a Dual n-back task. We considered three groups of young adult participants: ADHD patients without medication (ADHD), ADHD with medication (MADHD), and age/education-matched controls. Working memory training consisted of a daily practice of 20 blocks of Dual n-back task (approximately 30 min per day) for 20 days within one month. Participants of each group were randomly assigned into two subgroups, the first one with an adaptive mode of difficulty (adaptive training), while the second was blocked at the level 1 during the whole training phase (1-back task, baseline training). Alerting and orienting effects were not modified by working memory training. The dimensional analysis showed that after baseline training, the lesser the severity of the hyperactive-impulsive symptoms, the larger the improvement of reaction times on trials with high executive control/conflict demand (i.e., what is called Conflict Effect), irrespective of the participants' group. In the categorical analysis, we observed the improvement in such Conflict Effect after the adaptive training in adult ADHD patients irrespective of their medication, but not in controls. The ex-Gaussian analysis of RT and RT variability showed that the improvement in the Conflict Effect correlated with a decrease in the proportion of extreme slow responses. The Dual n-back task in the adaptive mode offers as a promising candidate for a cognitive remediation of adult ADHD patients without pharmaceutical medication

    An ERP study reveals how training with Dual N-Back task affects risky decision making in a gambling task in ADHD patients

    Get PDF
    Impaired decision making and Working Memory (WM) are among the characteristic symptoms of patients affected by Attention Deficit/Hyperactivity Disorder (ADHD). In order to investigate whether a WM training can affect the attitude towards risky decision making, we designed a study where participants had to perform a Probabilistic Gambling Task. Our study has demonstrated that WM training affects in a different way controls and ADHD patients, who showed an increased tendency towards a risk-taking attitude in case of the adaptive variant of the memory task. In ADHD patients, the frontal sites appeared the most affected, whereas global brain activity was likely to be affected in controls. This study shows also the benefits of cognitive training in ADHD patients, but in healthy subjects too

    Early Attentional Modulation by Working Memory Training in Young Adult ADHD Patients during a Risky Decision-Making Task

    No full text
    Background: Working memory (WM) deficits and impaired decision making are among the characteristic symptoms of patients affected by attention deficit/hyperactivity disorder (ADHD). The inattention associated with the disorder is likely to be due to functional deficits of the neural networks inhibiting irrelevant sensory input. In the presence of unnecessary information, a good decisional process is impaired and ADHD patients tend to take risky decisions. This study is aimed to test the hypothesis that the level of difficulty of a WM training (WMT) is affecting the top-down modulation of the attentional processes in a probabilistic gambling task. Methods: Event-related potentials (ERP) triggered by the choice of the amount wagered in the gambling task were recorded, before and after WMT with a the dual n-back task, in young ADHD adults and matched controls. For each group of participants, randomly assigned individuals were requested to perform WMT with a fixed baseline level of difficulty. The remaining participants were trained with a performance-dependent adaptive n-level of difficulty. Results: We compared the ERP recordings before and after 20 days of WMT in each subgroup. The analysis was focused on the time windows with at least three recording sites showing differences before and after training, after Bonferroni correction ( p < 0.05 ). In ADHD, the P1 wave component was selectively affected at frontal sites and its shape was recovered close to controls’ only after adaptive training. In controls, the strongest contrast was observed at parietal level with a left hemispheric dominance at latencies near 900 ms, more after baseline than after adaptive training. Conclusion: Partial restoration of early selective attentional processes in ADHD patients might occur after WMT with a high cognitive load. Modified frontal sites’ activities might constitute a neural marker of this effect in a gambling task. In controls, conversely, an increase in late parietal negativity might rather be a marker of an increase in transfer effects to fluid intelligence

    Attention Networks in ADHD Adults after Working Memory Training with a Dual n-Back Task

    No full text
    Patients affected by Attention-Deficit/Hyperactivity Disorder (ADHD) are characterized by impaired executive functioning and/or attention deficits. Our study aim is to determine whether the outcomes measured by the Attention Network Task (ANT), i.e., the reaction times (RTs) to specific target and cue conditions and alerting, orienting, and conflict (or executive control) effects are affected by cognitive training with a Dual n-back task. We considered three groups of young adult participants: ADHD patients without medication (ADHD), ADHD with medication (MADHD), and age/education-matched controls. Working memory training consisted of a daily practice of 20 blocks of Dual n-back task (approximately 30 min per day) for 20 days within one month. Participants of each group were randomly assigned into two subgroups, the first one with an adaptive mode of difficulty (adaptive training), while the second was blocked at the level 1 during the whole training phase (1-back task, baseline training). Alerting and orienting effects were not modified by working memory training. The dimensional analysis showed that after baseline training, the lesser the severity of the hyperactive-impulsive symptoms, the larger the improvement of reaction times on trials with high executive control/conflict demand (i.e., what is called Conflict Effect), irrespective of the participants’ group. In the categorical analysis, we observed the improvement in such Conflict Effect after the adaptive training in adult ADHD patients irrespective of their medication, but not in controls. The ex-Gaussian analysis of RT and RT variability showed that the improvement in the Conflict Effect correlated with a decrease in the proportion of extreme slow responses. The Dual n-back task in the adaptive mode offers as a promising candidate for a cognitive remediation of adult ADHD patients without pharmaceutical medication

    Event-Related Potentials during a Gambling Task in Young Adults with Attention-Deficit/Hyperactivity Disorder

    No full text
    Attention-deficit hyperactivity disorder (ADHD) is characterized by deficits in executive functions and decision making during childhood and adolescence. Contradictory results exist whether altered event-related potentials (ERPs) in adults are associated with the tendency of ADHD patients toward risky behavior. Clinically diagnosed ADHD patients (n = 18) and healthy controls (n = 18), aged between 18 and 29 (median 22 Yo), were screened with the Conners' Adult ADHD Rating Scales and assessed by the Mini-International Neuropsychiatric Interview, adult ADHD Self-Report Scale, and by the 60-item HEXACO Personality Inventory. The characteristic personality traits of ADHD patients were the high level of impulsiveness associated with lower values of agreeableness. All participants performed a probability gambling task (PGT) with two frequencies of the feedback information of the outcome. For each trial, ERPs were triggered by the self-paced trial onset and by the gamble selection. After trial onset, N2-P3a ERP component associated with the attentional load peaked earlier in the ADHD group than in controls. An N500 component related to the feedback frequency condition after trial onset and an N400-like component after gamble selection suggest a large affective stake of the decision making and an emphasized post-decisional evaluation of the choice made by the ADHD participants. By combining ERPs, related to the emotions associated with the feedback frequency condition, and behavioral analyses during completion of PGT, this study provides new findings on the neural dynamics that differentiate controls and young ADHD adults. In the patients' group, we raise the hypothesis that the activity of frontocentral and centroparietal neural circuits drive the decision-making processes dictated by an impaired cognitive workload followed by the build-up of large emotional feelings generated by the conflict toward the outcome of the gambling choice. Our results can be used for new investigations aimed at studying the fine spatiotemporal distribution of cortical activity, and the neural circuits that underly the generation of that activity, associated with the behavioral deficits characteristic of ADHD

    Table3.pdf

    No full text
    <p>Attention-deficit hyperactivity disorder (ADHD) is characterized by deficits in executive functions and decision making during childhood and adolescence. Contradictory results exist whether altered event-related potentials (ERPs) in adults are associated with the tendency of ADHD patients toward risky behavior. Clinically diagnosed ADHD patients (n = 18) and healthy controls (n = 18), aged between 18 and 29 (median 22 Yo), were screened with the Conners' Adult ADHD Rating Scales and assessed by the Mini-International Neuropsychiatric Interview, adult ADHD Self-Report Scale, and by the 60-item HEXACO Personality Inventory. The characteristic personality traits of ADHD patients were the high level of impulsiveness associated with lower values of agreeableness. All participants performed a probability gambling task (PGT) with two frequencies of the feedback information of the outcome. For each trial, ERPs were triggered by the self-paced trial onset and by the gamble selection. After trial onset, N2-P3a ERP component associated with the attentional load peaked earlier in the ADHD group than in controls. An N500 component related to the feedback frequency condition after trial onset and an N400-like component after gamble selection suggest a large affective stake of the decision making and an emphasized post-decisional evaluation of the choice made by the ADHD participants. By combining ERPs, related to the emotions associated with the feedback frequency condition, and behavioral analyses during completion of PGT, this study provides new findings on the neural dynamics that differentiate controls and young ADHD adults. In the patients' group, we raise the hypothesis that the activity of frontocentral and centroparietal neural circuits drive the decision-making processes dictated by an impaired cognitive workload followed by the build-up of large emotional feelings generated by the conflict toward the outcome of the gambling choice. Our results can be used for new investigations aimed at studying the fine spatiotemporal distribution of cortical activity, and the neural circuits that underly the generation of that activity, associated with the behavioral deficits characteristic of ADHD.</p

    Image1.pdf

    No full text
    <p>Attention-deficit hyperactivity disorder (ADHD) is characterized by deficits in executive functions and decision making during childhood and adolescence. Contradictory results exist whether altered event-related potentials (ERPs) in adults are associated with the tendency of ADHD patients toward risky behavior. Clinically diagnosed ADHD patients (n = 18) and healthy controls (n = 18), aged between 18 and 29 (median 22 Yo), were screened with the Conners' Adult ADHD Rating Scales and assessed by the Mini-International Neuropsychiatric Interview, adult ADHD Self-Report Scale, and by the 60-item HEXACO Personality Inventory. The characteristic personality traits of ADHD patients were the high level of impulsiveness associated with lower values of agreeableness. All participants performed a probability gambling task (PGT) with two frequencies of the feedback information of the outcome. For each trial, ERPs were triggered by the self-paced trial onset and by the gamble selection. After trial onset, N2-P3a ERP component associated with the attentional load peaked earlier in the ADHD group than in controls. An N500 component related to the feedback frequency condition after trial onset and an N400-like component after gamble selection suggest a large affective stake of the decision making and an emphasized post-decisional evaluation of the choice made by the ADHD participants. By combining ERPs, related to the emotions associated with the feedback frequency condition, and behavioral analyses during completion of PGT, this study provides new findings on the neural dynamics that differentiate controls and young ADHD adults. In the patients' group, we raise the hypothesis that the activity of frontocentral and centroparietal neural circuits drive the decision-making processes dictated by an impaired cognitive workload followed by the build-up of large emotional feelings generated by the conflict toward the outcome of the gambling choice. Our results can be used for new investigations aimed at studying the fine spatiotemporal distribution of cortical activity, and the neural circuits that underly the generation of that activity, associated with the behavioral deficits characteristic of ADHD.</p

    Table2.pdf

    No full text
    <p>Attention-deficit hyperactivity disorder (ADHD) is characterized by deficits in executive functions and decision making during childhood and adolescence. Contradictory results exist whether altered event-related potentials (ERPs) in adults are associated with the tendency of ADHD patients toward risky behavior. Clinically diagnosed ADHD patients (n = 18) and healthy controls (n = 18), aged between 18 and 29 (median 22 Yo), were screened with the Conners' Adult ADHD Rating Scales and assessed by the Mini-International Neuropsychiatric Interview, adult ADHD Self-Report Scale, and by the 60-item HEXACO Personality Inventory. The characteristic personality traits of ADHD patients were the high level of impulsiveness associated with lower values of agreeableness. All participants performed a probability gambling task (PGT) with two frequencies of the feedback information of the outcome. For each trial, ERPs were triggered by the self-paced trial onset and by the gamble selection. After trial onset, N2-P3a ERP component associated with the attentional load peaked earlier in the ADHD group than in controls. An N500 component related to the feedback frequency condition after trial onset and an N400-like component after gamble selection suggest a large affective stake of the decision making and an emphasized post-decisional evaluation of the choice made by the ADHD participants. By combining ERPs, related to the emotions associated with the feedback frequency condition, and behavioral analyses during completion of PGT, this study provides new findings on the neural dynamics that differentiate controls and young ADHD adults. In the patients' group, we raise the hypothesis that the activity of frontocentral and centroparietal neural circuits drive the decision-making processes dictated by an impaired cognitive workload followed by the build-up of large emotional feelings generated by the conflict toward the outcome of the gambling choice. Our results can be used for new investigations aimed at studying the fine spatiotemporal distribution of cortical activity, and the neural circuits that underly the generation of that activity, associated with the behavioral deficits characteristic of ADHD.</p

    Table1.pdf

    No full text
    <p>Attention-deficit hyperactivity disorder (ADHD) is characterized by deficits in executive functions and decision making during childhood and adolescence. Contradictory results exist whether altered event-related potentials (ERPs) in adults are associated with the tendency of ADHD patients toward risky behavior. Clinically diagnosed ADHD patients (n = 18) and healthy controls (n = 18), aged between 18 and 29 (median 22 Yo), were screened with the Conners' Adult ADHD Rating Scales and assessed by the Mini-International Neuropsychiatric Interview, adult ADHD Self-Report Scale, and by the 60-item HEXACO Personality Inventory. The characteristic personality traits of ADHD patients were the high level of impulsiveness associated with lower values of agreeableness. All participants performed a probability gambling task (PGT) with two frequencies of the feedback information of the outcome. For each trial, ERPs were triggered by the self-paced trial onset and by the gamble selection. After trial onset, N2-P3a ERP component associated with the attentional load peaked earlier in the ADHD group than in controls. An N500 component related to the feedback frequency condition after trial onset and an N400-like component after gamble selection suggest a large affective stake of the decision making and an emphasized post-decisional evaluation of the choice made by the ADHD participants. By combining ERPs, related to the emotions associated with the feedback frequency condition, and behavioral analyses during completion of PGT, this study provides new findings on the neural dynamics that differentiate controls and young ADHD adults. In the patients' group, we raise the hypothesis that the activity of frontocentral and centroparietal neural circuits drive the decision-making processes dictated by an impaired cognitive workload followed by the build-up of large emotional feelings generated by the conflict toward the outcome of the gambling choice. Our results can be used for new investigations aimed at studying the fine spatiotemporal distribution of cortical activity, and the neural circuits that underly the generation of that activity, associated with the behavioral deficits characteristic of ADHD.</p
    corecore