114 research outputs found
On the Throughput Allocation for Proportional Fairness in Multirate IEEE 802.11 DCF
This paper presents a modified proportional fairness (PF) criterion suitable
for mitigating the \textit{rate anomaly} problem of multirate IEEE 802.11
Wireless LANs employing the mandatory Distributed Coordination Function (DCF)
option. Compared to the widely adopted assumption of saturated network, the
proposed criterion can be applied to general networks whereby the contending
stations are characterized by specific packet arrival rates, , and
transmission rates .
The throughput allocation resulting from the proposed algorithm is able to
greatly increase the aggregate throughput of the DCF while ensuring fairness
levels among the stations of the same order of the ones available with the
classical PF criterion. Put simply, each station is allocated a throughput that
depends on a suitable normalization of its packet rate, which, to some extent,
measures the frequency by which the station tries to gain access to the
channel. Simulation results are presented for some sample scenarios, confirming
the effectiveness of the proposed criterion.Comment: Submitted to IEEE CCNC 200
On The Linear Behaviour of the Throughput of IEEE 802.11 DCF in Non-Saturated Conditions
We propose a linear model of the throughput of the IEEE 802.11 Distributed
Coordination Function (DCF) protocol at the data link layer in non-saturated
traffic conditions. We show that the throughput is a linear function of the
packet arrival rate (PAR) with a slope depending on both the number
of contending stations and the average payload length. We also derive the
interval of validity of the proposed model by showing the presence of a
critical , above which the station begins operating in saturated
traffic conditions.
The analysis is based on the multi-dimensional Markovian state transition
model proposed by Liaw \textit{et al.} with the aim of describing the behaviour
of the MAC layer in unsaturated traffic conditions. Simulation results closely
match the theoretical derivations, confirming the effectiveness of the proposed
linear model.Comment: To appear on IEEE Communications Letters, November 200
A Model of the IEEE 802.11 DCF in Presence of Non Ideal Transmission Channel and Capture Effects
In this paper, we provide a throughput analysis of the IEEE 802.11 protocol
at the data link layer in non-saturated traffic conditions taking into account
the impact of both transmission channel and capture effects in Rayleigh fading
environment. Impacts of both non-ideal channel and capture become important in
terms of the actual observed throughput in typical network conditions whereby
traffic is mainly unsaturated, specially in an environment of high
interference.
We extend the multi-dimensional Markovian state transition model
characterizing the behavior at the MAC layer by including transmission states
that account for packet transmission failures due to errors caused by
propagation through the channel, along with a state characterizing the system
when there are no packets to be transmitted in the buffer of a station.Comment: Accepted for oral presentation to IEEE Globecom 2007, Washington
D.C., November 200
On the Behavior of the Distributed Coordination Function of IEEE 802.11 with Multirate Capability under General Transmission Conditions
The aim of this paper is threefold. First, it presents a multi-dimensional
Markovian state transition model characterizing the behavior of the IEEE 802.11
protocol at the Medium Access Control layer which accounts for packet
transmission failures due to channel errors modeling both saturated and
non-saturated traffic conditions. Second, it provides a throughput analysis of
the IEEE 802.11 protocol at the data link layer in both saturated and
non-saturated traffic conditions taking into account the impact of both the
physical propagation channel and multirate transmission in Rayleigh fading
environment. The general traffic model assumed is M/M/1/K. Finally, it shows
that the behavior of the throughput in non-saturated traffic conditions is a
linear combination of two system parameters; the payload size and the packet
rates, , of each contending station. The validity interval of
the proposed model is also derived.
Simulation results closely match the theoretical derivations, confirming the
effectiveness of the proposed models.Comment: Submitted to IEEE Transactions on Wireless Communications, October
21, 200
Unsaturated Throughput Analysis of IEEE 802.11 in Presence of Non Ideal Transmission Channel and Capture Effects
In this paper, we provide a throughput analysis of the IEEE 802.11 protocol
at the data link layer in non-saturated traffic conditions taking into account
the impact of both transmission channel and capture effects in Rayleigh fading
environment. The impact of both non-ideal channel and capture become important
in terms of the actual observed throughput in typical network conditions
whereby traffic is mainly unsaturated, especially in an environment of high
interference.
We extend the multi-dimensional Markovian state transition model
characterizing the behavior at the MAC layer by including transmission states
that account for packet transmission failures due to errors caused by
propagation through the channel, along with a state characterizing the system
when there are no packets to be transmitted in the buffer of a station.
Finally, we derive a linear model of the throughput along with its interval of
validity.
Simulation results closely match the theoretical derivations confirming the
effectiveness of the proposed model.Comment: To appear on IEEE Transactions on Wireless Communications, 200
Saturation Throughput Analysis of IEEE 802.11 in Presence of Non Ideal Transmission Channel and Capture Effects
In this paper, we provide a saturation throughput analysis of the IEEE 802.11
protocol at the data link layer by including the impact of both transmission
channel and capture effects in Rayleigh fading environment. Impacts of both
non-ideal channel and capture effects, specially in an environment of high
interference, become important in terms of the actual observed throughput. As
far as the 4-way handshaking mechanism is concerned, we extend the
multi-dimensional Markovian state transition model characterizing the behavior
at the MAC layer by including transmission states that account for packet
transmission failures due to errors caused by propagation through the channel.
This way, any channel model characterizing the physical transmission medium can
be accommodated, including AWGN and fading channels. We also extend the Markov
model in order to consider the behavior of the contention window when employing
the basic 2-way handshaking mechanism.
Under the usual assumptions regarding the traffic generated per node and
independence of packet collisions, we solve for the stationary probabilities of
the Markov chain and develop expressions for the saturation throughput as a
function of the number of terminals, packet sizes, raw channel error rates,
capture probability, and other key system parameters. The theoretical
derivations are then compared to simulation results confirming the
effectiveness of the proposed models.Comment: To appear on IEEE Transactions on Communications, 200
Current updates on naturally occurring compounds recognizing sars-cov-2 druggable targets
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been identified in China as the etiologic agent of the recent COVID-19 pandemic outbreak. Due to its high transmissibil-ity, this virus quickly spread throughout the world, causing considerable health issues. The scientific community exerted noteworthy efforts to obtain therapeutic solutions for COVID-19, and new scientific networks were constituted. No certified drugs to efficiently inhibit the virus were identified, and the development of de-novo medicines requires approximately ten years of research. Therefore, the repurposing of natural products could be an effective strategy to handle SARS-CoV-2 infection. This review aims to update on current status of the natural occurring compounds recognizing SARS-CoV-2 druggable targets. Among the clinical trials actually recruited, some natural compounds are ongoing to examine their potential role to prevent and to treat the COVID-19 infection. Many natural scaffolds, including alkaloids, terpenes, flavonoids, and benzoquinones, were investigated by in-silico, in-vitro, and in-vivo approaches. Despite the large data set obtained by a computational approach, experimental evidences in most cases are not available. To fill this gap, further efforts to validate these results are required. We believe that an accurate investigation of naturally occurring compounds may provide insights for the potential treatment of COVID-19 patients
- …