24 research outputs found

    Shock formation and rate effects in impacted carbon nanotube foams

    Get PDF
    We investigate rate-effects in the dynamic response of vertically aligned carbon nanotube (VACNT) foams excited by impacts at controlled velocities. They exhibit a complex rate-dependent loading–unloading response at low impact velocities and they support shock formation beyond a critical velocity. The measured critical velocities are ∼10 times lower than in other foams of similar densities—a desirable characteristic in impact protective applications. In-situ high-speed microscopy reveals strain localization and progressive buckling at low velocities and a crush-front propagation during shock compression. We correlate these responses to quantitative measurements of the density gradient and fiber morphology, obtained with spatially resolved X-ray scattering and mass attenuation

    Anomalous impact and strain responses in helical carbon nanotube foams

    Get PDF
    We describe the quasistatic and dynamic response of helical carbon nanotube (HCNT) foams in compression. Similarly to other CNT foams, HCNT foams exhibit preconditioning effects in response to cyclic loading; however, their fundamental deformation mechanisms are unique. In quasistatic compression, HCNT foams exhibit strain localization and collective structural buckling, nucleating at different weak sections throughout their thickness. In dynamic compression, they undergo progressive crushing, governed by the intrinsic density gradient along the thickness of the sample. HCNT micro-bundles often undergo brittle fracture that originates from nanoscale defects. Regardless of this microstructural damage, bulk HCNT foams exhibit super-compressibility and recover more than 90% of large compressive strains (up to 80%). When subjected to striker impacts, HCNT foams mitigate impact stresses more effectively compared to other CNT foams comprised of non-helical CNTs ([similar]50% improvement). The unique mechanical properties we revealed demonstrate that the HCNT foams are ideally suited for applications in packaging, impact protection, and vibration mitigation

    Diameter-dependent kinetics of activation and deactivation in carbon nanotube population growth

    No full text
    A B S T R A C T We reveal that the collective growth of vertically aligned carbon nanotube (CNT) forests by chemical vapor deposition (CVD) is governed by the size-dependent catalytic behavior of metal nanoparticles, which can be quantitatively related to the activation and deactivation kinetics of subpopulations of CNTs within the forest. We establish this understanding by uniquely combining real-time forest height kinetics with ex situ synchrotron X-ray scattering and mass-attenuation measurements. The growing CNT population is divided into subpopulations, each having a narrow diameter range, enabling the quantification of the diameter-dependent population dynamics. We find that the mass kinetics of different subpopulations are self-similar and are represented by the S-shaped Gompertz model of population growth, which reveals that smaller diameter CNTs activate more slowly but have longer catalytic lifetimes. While competition between growth activation and deactivation kinetics is diameter-dependent, CNTs are held in contact by van der Waals forces, thus preventing relative slip and resulting in a single collective growth rate of the forest. Therefore, we hypothesize that mechanical coupling gives rise to the inherent tortuosity of CNTs within forests and possibly causes structural defects which limit the properties of current CNT forests in comparison to pristine individual CNTs. Ă“ 2012 Elsevier Ltd. All rights reserved. Introduction The size-dependent catalytic behavior of metal nanoparticles [1,2] influences a broad spectrum of technologically important processes, such as the reforming of hydrocarbon

    Measurement of the Dewetting, Nucleation, and Deactivation Kinetics of Carbon Nanotube Population Growth by Environmental Transmission Electron Microscopy

    No full text
    Understanding the collective growth of carbon nanotube (CNT) populations is key to tailoring their properties for many applications. During the initial stages of CNT growth by chemical vapor deposition, catalyst nanoparticle formation by thin-film dewetting and the subsequent CNT nucleation processes dictate the CNT diameter distribution, areal density, and alignment. Herein, we use <i>in situ</i> environmental transmission electron microscopy (E-TEM) to observe the catalyst annealing, growth, and deactivation stages for a population of CNTs grown from a thin-film catalyst. Complementary <i>in situ</i> electron diffraction and TEM imaging show that, during the annealing step in hydrogen, reduction of the iron oxide catalyst is concomitant with changes in the thin-film morphology; complete dewetting and the formation of a population of nanoparticles is only achieved upon the introduction of the carbon source, acetylene. The dewetting kinetics, i.e., the appearance of distinct nanoparticles, exhibits a sigmoidal (autocatalytic) curve with 95% of all nanoparticles appearing within 6 s. After nanoparticles form, they either nucleate CNTs or remain inactive, with incubation times measured to be as small as 3.5 s. Via E-TEM we also directly observe the crowding and self-alignment of CNTs after dewetting and nucleation. In addition, <i>in situ</i> electron energy loss spectroscopy reveals that the collective rate of carbon accumulation decays exponentially. We conclude that the kinetics of catalyst formation and CNT nucleation must both be addressed in order to achieve uniform and high CNT density, and their transient behavior may be a primary cause of the well-known nonuniform density of CNT forests

    Measurement of the Dewetting, Nucleation, and Deactivation Kinetics of Carbon Nanotube Population Growth by Environmental Transmission Electron Microscopy

    No full text
    Understanding the collective growth of carbon nanotube (CNT) populations is key to tailoring their properties for many applications. During the initial stages of CNT growth by chemical vapor deposition, catalyst nanoparticle formation by thin-film dewetting and the subsequent CNT nucleation processes dictate the CNT diameter distribution, areal density, and alignment. Herein, we use <i>in situ</i> environmental transmission electron microscopy (E-TEM) to observe the catalyst annealing, growth, and deactivation stages for a population of CNTs grown from a thin-film catalyst. Complementary <i>in situ</i> electron diffraction and TEM imaging show that, during the annealing step in hydrogen, reduction of the iron oxide catalyst is concomitant with changes in the thin-film morphology; complete dewetting and the formation of a population of nanoparticles is only achieved upon the introduction of the carbon source, acetylene. The dewetting kinetics, i.e., the appearance of distinct nanoparticles, exhibits a sigmoidal (autocatalytic) curve with 95% of all nanoparticles appearing within 6 s. After nanoparticles form, they either nucleate CNTs or remain inactive, with incubation times measured to be as small as 3.5 s. Via E-TEM we also directly observe the crowding and self-alignment of CNTs after dewetting and nucleation. In addition, <i>in situ</i> electron energy loss spectroscopy reveals that the collective rate of carbon accumulation decays exponentially. We conclude that the kinetics of catalyst formation and CNT nucleation must both be addressed in order to achieve uniform and high CNT density, and their transient behavior may be a primary cause of the well-known nonuniform density of CNT forests

    Statistical Analysis of Variation in Laboratory Growth of Carbon Nanotube Forests and Recommendations for Improved Consistency

    No full text
    While many promising applications have been demonstrated for vertically aligned carbon nanotube (CNT) forests, lack of consistency in results (<i>e</i>.<i>g</i>., CNT quality, height, and density) continues to hinder knowledge transfer and commercialization. For example, it is well known that CNT growth can be influenced by small concentrations of water vapor, carbon deposits on the reactor wall, and experiment-to-experiment variations in pressure within the reaction chamber. However, even when these parameters are controlled during synthesis, we found that variations in ambient lab conditions can overwhelm attempts to perform parametric optimization studies. We established a standard growth procedure, including the chemical vapor deposition (CVD) recipe, while we varied other variables related to the furnace configuration and experimental procedure. Statistical analysis of 280 samples showed that ambient humidity, barometric pressure, and sample position in the CVD furnace contribute significantly to experiment-to-experiment variation. We investigated how these factors lead to CNT growth variation and recommend practices to improve process repeatability. Initial results using this approach reduced run-to-run variation in CNT forest height and density by more than 50%
    corecore