35 research outputs found
Fluorine in silicate glasses: A multinuclear nuclear magnetic resonance study
Anhydrous nepheline, jadeite, and albite glasses doped with F as well as hydrous F-containing haplogranitic glasses were investigated using 19F combined rotation and multiple-pulse spectroscopy; 19F → 29Si cross-polarization/magic angle spinning (MAS); and high-power 19F decoupled 29Si, 23Na, and 27Al MAS nuclear magnetic resonance methods. Fluorine preferentially coordinates with Al to form octahedral AlF63− complexes in all glasses studied. In addition, F anions bridging two Al cations, units containing octahedral Al coordinated by both O and F, or tetrahedral Al-F complexes might be present. The presence of Si-F bonds cannot be entirely ruled out but appears unlikely on the basis of the 19F → 29Si CP/MAS spectra. There is no evidence for any significant coordination of F with alkalis in the glasses studied. 23Na spectra are identical for the samples and their F-free equivalents and the spectra do not change upon decoupling of 19F. The speciation of F in the hydrous and anhydrous glasses appears to be very similar. Over the range of F contents studied ( up to 5 wt.% ), there seems to be hardly any dependence of F speciation on the concentration of F in the samples. The spectroscopic results explain the decrease of the viscosity of silicate melts with increasing F content by removal of Al from bridging AlO4-units due to complexing with F, which causes depolymerization of the melt. The same mechanism can account for the shift of the eutectic point in the haplogranite system to more feldspar-rich compositions with increasing F content, and for the peraluminous composition of most F-rich granites. Liquid immiscibility in F-rich granitic melts might be caused by formation of (Na,K)3AlF6 units in the melt with little or no interaction with the silicate component. The presence of F in granitic melts might increase the solubility of high field strength cations by making nonbridging O atoms available which form complexes with these cations
Fluorine in silicate glasses: A multinuclear nuclear magnetic resonance study
Anhydrous nepheline, jadeite, and albite glasses doped with F as well as hydrous F-containing haplogranitic glasses were investigated using 19F combined rotation and multiple-pulse spectroscopy; 19F → 29Si cross-polarization/magic angle spinning (MAS); and high-power 19F decoupled 29Si, 23Na, and 27Al MAS nuclear magnetic resonance methods. Fluorine preferentially coordinates with Al to form octahedral AlF63− complexes in all glasses studied. In addition, F anions bridging two Al cations, units containing octahedral Al coordinated by both O and F, or tetrahedral Al-F complexes might be present. The presence of Si-F bonds cannot be entirely ruled out but appears unlikely on the basis of the 19F → 29Si CP/MAS spectra. There is no evidence for any significant coordination of F with alkalis in the glasses studied. 23Na spectra are identical for the samples and their F-free equivalents and the spectra do not change upon decoupling of 19F. The speciation of F in the hydrous and anhydrous glasses appears to be very similar. Over the range of F contents studied ( up to 5 wt.% ), there seems to be hardly any dependence of F speciation on the concentration of F in the samples. The spectroscopic results explain the decrease of the viscosity of silicate melts with increasing F content by removal of Al from bridging AlO4-units due to complexing with F, which causes depolymerization of the melt. The same mechanism can account for the shift of the eutectic point in the haplogranite system to more feldspar-rich compositions with increasing F content, and for the peraluminous composition of most F-rich granites. Liquid immiscibility in F-rich granitic melts might be caused by formation of (Na,K)3AlF6 units in the melt with little or no interaction with the silicate component. The presence of F in granitic melts might increase the solubility of high field strength cations by making nonbridging O atoms available which form complexes with these cations
Unions, Dynamism and economic performance
This paper explores the relationship between economic performance and US unionism, focusing first on what we do and do not know based on empirical research handicapped by limited data on establishment and firm level collective bargaining coverage. Evidence on the relationship of unions with wages, productivity, profitability, investment, debt, employment growth, and business failures are all relevant in assessing the future of unions and public policy with respect to unions. A reasonably coherent story emerges from the empirical literature, albeit one that rests heavily on evidence that is dated and (arguably) unable to identify truly causal effects. The paper's principal thesis is that union decline has been tied fundamentally to competitive forces and economic dynamism. Implications of these findings for labor law policy and the future of worker voice institutions is discussed briefly in a final section
What Do Unions Do for Economic Performance?
Twenty years have passed since Freeman and Medoff's What Do Unions Do? This essay assesses their analysis of how unions in the U.S. private sector affect economic performance - productivity, profitability, investment, and growth. Freeman and Medoff are clearly correct that union productivity effects vary substantially across workplaces. Their conclusion that union effects are on average positive and substantial cannot be sustained, subsequent
evidence suggesting an average union productivity effect near zero. Their speculation that productivity effects are larger in more competitive environments appears to hold up, although more evidence is needed. Subsequent literature continues to find unions associated with lower profitability, as noted by Freeman and Medoff. Unions are found to tax returns
stemming from market power, but industry concentration is not the source of such returns. Rather, unions capture firm quasi-rents arising from long-lived tangible and intangible capital and from firm-specific advantages. Lower profits and the union tax on asset returns leads to reduced investment and, subsequently, lower employment and productivity growth. There is
little evidence that unionization leads to higher rates of business failure. Given the decline in U.S. private sector unionism, I explore avenues through which individual and collective voice might be enhanced, focusing on labor law and workplace governance defaults. Substantial enhancement of voice requires change in the nonunion sector and employer as well as worker initiatives. It is unclear whether labor unions would be revitalized or further marginalized by such an evolution
(Arene)tricarbonylchromium Complexes Synthesized on NaX Zeolite:Â Solid-State NMR and DRIFTS Studies
15N Chemical Shifts in Energetic Materials: CP/MAS and ab Initio Studies of Aminonitropyridines, Aminonitropyrimidines, and Their N-Oxides
Solid state 15N NMR chemical shift measurements have been performed on a series of nitro- and amino-substituted nitrogen-containing heterocycles that are of interest as potential new insensitive explosives. Due to low solubilities, many of these compounds are not amenable to study by solution state methods. Theoretical calculations of 15N chemical shift parameters have been performed on the structures of interest and are reported herein. The calculated and experimental values are in good agreement. The use of a model that includes intermolecular effects and allows the proton positions of the nearest neighbors to be optimized leads to the best agreement between calculated and experimental values. The theoretical models accurately predict the effects of nitro and amino substituents on ringnitrogen chemical shifts, explaining a seeming reversal in trend that is noted in the pyridine and pyridine-1-oxide chemical shifts of the highly substituted compounds
and Their N-Oxides
Abstract: Solid state 15 N NMR chemical shift measurements have been performed on a series of nitro- and amino-substituted nitrogen-containing heterocycles that are of interest as potential new insensitive explosives. Due to low solubilities, many of these compounds are not amenable to study by solution state methods. Theoretical calculations of 15 N chemical shift parameters have been performed on the structures of interest and are reported herein. The calculated and experimental values are in good agreement. The use of a model that includes intermolecular effects and allows the proton positions of the nearest neighbors to be optimized leads to the best agreement between calculated and experimental values. The theoretical models accurately predict the effects of nitro and amino substituents on ringnitrogen chemical shifts, explaining a seeming reversal in trend that is noted in the pyridine and pyridine-1-oxide chemical shifts of the highly substituted compounds