10 research outputs found

    What are we missing? False- negative cancers at multiparametric MR imaging of the prostate

    No full text
    Purpose: To characterize clinically important prostate cancers missed at multiparametric (MP) magnetic resonance (MR) imaging. Materials and Methods: The local institutional review board approved this HIPAAcompliant retrospective single-center study, which included 100 consecutive patients who had undergone MP MR imaging and subsequent radical prostatectomy. A genitourinary pathologist blinded to MP MR findings outlined prostate cancers on whole-mount pathology slices. Two readers correlated mapped lesions with reports of prospectively read MP MR images. Readers were blinded to histopathology results during prospective reading. At histopathologic examination, 80 clinically unimportant lesions (,5 mm; Gleason score, 3+3) were excluded. The same two readers, who were not blinded to histopathologic findings, retrospectively reviewed cancers missed at MP MR imaging and assigned a Prostate Imaging Reporting and Data System (PI-RADS) version 2 score to better understand false-negative lesion characteristics. Descriptive statistics were used to define patient characteristics, including age, prostate-specific antigen (PSA) level, PSA density, race, digital rectal examination results, and biopsy results before MR imaging. Student t test was used to determine any demographic differences between patients with false-negative MP MR imaging findings and those with correct prospective identification of all lesions. Results: Of the 162 lesions, 136 (84%) were correctly identified with MP MR imaging. Size of eight lesions was underestimated. Among the 26 (16%) lesions missed at MP MR imaging, Gleason score was 3+4 in 17 (65%), 4+3 in one (4%), 4+4 in seven (27%), and 4+5 in one (4%). Retrospective PI-RADS version 2 scores were assigned (PI-RADS 1, n = 8; PI-RADS 2, n = 7; PI-RADS 3, n = 6; and PI-RADS 4, n = 5). On a perpatient basis, MP MR imaging depicted clinically important prostate cancer in 99 of 100 patients. At least one clinically important tumor was missed in 26 (26%) patients, and lesion size was underestimated in eight (8%). Conclusion: Clinically important lesions can be missed or their size can be underestimated at MP MR imaging. Of missed lesions, 58% were not seen or were characterized as benign findings at second-look analysis. Recognition of the limitations of MP MR imaging is important, and new approaches to reduce this false-negative rate are needed

    Validation of PI-RADS version 2 in transition zone lesions for the detection of prostate cancer

    No full text
    © RSNA, 2018. Purpose: To determine the association between Prostate Imaging Reporting and Data System (PI-RADS) version 2 scores and prostate cancer (PCa) in a cohort of patients undergoing biopsy of transition zone (TZ) lesions. Materials and Methods: A total of 634 TZ lesions in 457 patients were identified from a prospectively maintained database of consecutive patients undergoing prostate magnetic resonance imaging. Prostate lesions were retrospectively categorized with the PI-RADS version 2 system by two readers in consensus who were blinded to histopathologic findings. The proportion of cancer detection for all PCa and for clinically important PCa (Gleason score 3+4) for each PI-RADS version 2 category was determined. The performance of PI-RADS version 2 in cancer detection was evaluated. Results: For PI-RADS category 2 lesions, the overall proportion of cancers was 4% (one of 25), without any clinically important cancer. For PI-RADS category 3, 4, and 5 lesions, the overall proportion of cancers was 22.2% (78 of 352), 39.1% (43 of 110), and 87.8% (129 of 147), respectively, and the proportion of clinically important cancers was 11.1% (39 of 352), 29.1% (32 of 110), and 77.6% (114 of 147), respectively. Higher PI-RADS version 2 scores were associated with increasing likelihood of the presence of clinically important PCa (P , .001). Differences were found in the percentage of cancers in the PI-RADS category between PI-RADS 3 and those upgraded to PI-RADS 4 based on diffusion-weighted imaging for clinically important cancers (proportion for clinically important cancers for PI-RADS 3 and PI-RADS 3+1 were 11.1% [39 of 352] and 30.8% [28 of 91], respectively; P \u3c .001). Conclusion: Higher PI-RADS version 2 scores are associated with a higher proportion of clinically important cancers in the TZ. PIRADS category 2 lesions rarely yield PCa, and their presence does not justify targeted biopsy

    What Are We Missing? False-Negative Cancers at Multiparametric MR Imaging of the Prostate.

    No full text
    Purpose: To characterize clinically important prostate cancers missed at multiparametric (MP) magnetic resonance (MR) imaging. Materials and Methods: The local institutional review board approved this HIPAAcompliant retrospective single-center study, which included 100 consecutive patients who had undergone MP MR imaging and subsequent radical prostatectomy. A genitourinary pathologist blinded to MP MR findings outlined prostate cancers on whole-mount pathology slices. Two readers correlated mapped lesions with reports of prospectively read MP MR images. Readers were blinded to histopathology results during prospective reading. At histopathologic examination, 80 clinically unimportant lesions (,5 mm; Gleason score, 3+3) were excluded. The same two readers, who were not blinded to histopathologic findings, retrospectively reviewed cancers missed at MP MR imaging and assigned a Prostate Imaging Reporting and Data System (PI-RADS) version 2 score to better understand false-negative lesion characteristics. Descriptive statistics were used to define patient characteristics, including age, prostate-specific antigen (PSA) level, PSA density, race, digital rectal examination results, and biopsy results before MR imaging. Student t test was used to determine any demographic differences between patients with false-negative MP MR imaging findings and those with correct prospective identification of all lesions. Results: Of the 162 lesions, 136 (84%) were correctly identified with MP MR imaging. Size of eight lesions was underestimated. Among the 26 (16%) lesions missed at MP MR imaging, Gleason score was 3+4 in 17 (65%), 4+3 in one (4%), 4+4 in seven (27%), and 4+5 in one (4%). Retrospective PI-RADS version 2 scores were assigned (PI-RADS 1, n = 8; PI-RADS 2, n = 7; PI-RADS 3, n = 6; and PI-RADS 4, n = 5). On a perpatient basis, MP MR imaging depicted clinically important prostate cancer in 99 of 100 patients. At least one clinically important tumor was missed in 26 (26%) patients, and lesion size was underestimated in eight (8%). Conclusion: Clinically important lesions can be missed or their size can be underestimated at MP MR imaging. Of missed lesions, 58% were not seen or were characterized as benign findings at second-look analysis. Recognition of the limitations of MP MR imaging is important, and new approaches to reduce this false-negative rate are needed

    Computer-aided diagnosis prior to conventional interpretation of prostate mpMRI: an international multi-reader study

    No full text
    © 2018, This is a U.S. government work and its text is not subject to copyright protection in the United States; however, its text may be subject to foreign copyright protection 2018. Objectives: To evaluate if computer-aided diagnosis (CAD) prior to prostate multi-parametric MRI (mpMRI) can improve sensitivity and agreement between radiologists. Methods: Nine radiologists (three each high, intermediate, low experience) from eight institutions participated. A total of 163 patients with 3-T mpMRI from 4/2012 to 6/2015 were included: 110 cancer patients with prostatectomy after mpMRI, 53 patients with no lesions on mpMRI and negative TRUS-guided biopsy. Readers were blinded to all outcomes and detected lesions per PI-RADSv2 on mpMRI. After 5 weeks, readers re-evaluated patients using CAD to detect lesions. Prostatectomy specimens registered to MRI were ground truth with index lesions defined on pathology. Sensitivity, specificity and agreement were calculated per patient, lesion level and zone—peripheral (PZ) and transition (TZ). Results: Index lesion sensitivity was 78.2% for mpMRI alone and 86.3% for CAD-assisted mpMRI (p = 0.013). Sensitivity was comparable for TZ lesions (78.7% vs 78.1%; p = 0.929); CAD improved PZ lesion sensitivity (84% vs 94%; p = 0.003). Improved sensitivity came from lesions scored PI-RADS \u3c 3 as index lesion sensitivity was comparable at PI-RADS ≥ 3 (77.6% vs 78.1%; p = 0.859). Per patient specificity was 57.1% for CAD and 70.4% for mpMRI (p = 0.003). CAD improved agreement between all readers (56.9% vs 71.8%; p \u3c 0.001). Conclusions: CAD-assisted mpMRI improved sensitivity and agreement, but decreased specificity, between radiologists of varying experience. Key Points: • Computer-aided diagnosis (CAD) assists clinicians in detecting prostate cancer on MRI. • CAD assistance improves agreement between radiologists in detecting prostate cancer lesions. • However, this CAD system induces more false positives, particularly for less-experienced clinicians and in the transition zone. • CAD assists radiologists in detecting cancer missed on MRI, suggesting a path for improved diagnostic confidence

    Validation of the Dominant Sequence Paradigm and Role of Dynamic Contrast-enhanced Imaging in PI-RADS Version 2.

    No full text
    Purpose To validate the dominant pulse sequence paradigm and limited role of dynamic contrast material-enhanced magnetic resonance (MR) imaging in the Prostate Imaging Reporting and Data System (PI-RADS) version 2 for prostate multiparametric MR imaging by using data from a multireader study. Materials and Methods This HIPAA-compliant retrospective interpretation of prospectively acquired data was approved by the local ethics committee. Patients were treatment-naïve with endorectal coil 3-T multiparametric MR imaging. A total of 163 patients were evaluated, 110 with prostatectomy after multiparametric MR imaging and 53 with negative multiparametric MR imaging and systematic biopsy findings. Nine radiologists participated in this study and interpreted images in 58 patients, on average (range, 56-60 patients). Lesions were detected with PI-RADS version 2 and were compared with whole-mount prostatectomy findings. Probability of cancer detection for overall, T2-weighted, and diffusion-weighted (DW) imaging PI-RADS scores was calculated in the peripheral zone (PZ) and transition zone (TZ) by using generalized estimating equations. To determine dominant pulse sequence and benefit of dynamic contrast-enhanced (DCE) imaging, odds ratios (ORs) were calculated as the ratio of odds of cancer of two consecutive scores by logistic regression. Results A total of 654 lesions (420 in the PZ) were detected. The probability of cancer detection for PI-RADS category 2, 3, 4, and 5 lesions was 15.7%, 33.1%, 70.5%, and 90.7%, respectively. DW imaging outperformed T2-weighted imaging in the PZ (OR, 3.49 vs 2.45; P = .008). T2-weighted imaging performed better but did not clearly outperform DW imaging in the TZ (OR, 4.79 vs 3.77; P = .494). Lesions classified as PI-RADS category 3 at DW MR imaging and as positive at DCE imaging in the PZ showed a higher probability of cancer detection than did DCE-negative PI-RADS category 3 lesions (67.8% vs 40.0%, P = .02). The addition of DCE imaging to DW imaging in the PZ was beneficial (OR, 2.0; P = .027), with an increase in the probability of cancer detection of 15.7%, 16.0%, and 9.2% for PI-RADS category 2, 3, and 4 lesions, respectively. Conclusion DW imaging outperforms T2-weighted imaging in the PZ; T2-weighted imaging did not show a significant difference when compared with DW imaging in the TZ by PI-RADS version 2 criteria. The addition of DCE imaging to DW imaging scores in the PZ yields meaningful improvements in probability of cancer detection. © RSNA, 2017 An earlier incorrect version of this article appeared online. This article was corrected on July 27, 2017. Online supplemental material is available for this article
    corecore