1,375 research outputs found
Coding of geodesics on some modular surfaces and applications to odd and even continued fractions
The connection between geodesics on the modular surface
and regular continued
fractions, established by Series, is extended to a connection between geodesics
on and odd and grotesque continued fractions,
where is the index two subgroup of
generated by the order three elements
and
, having
an ideal quadrilateral as fundamental domain. A similar connection between
geodesics on and even continued fractions is
discussed in our framework, where denotes the Theta subgroup of
generated by and .Comment: 19 pages, minor typos corrected and clarifications added in the
published versio
The calcified seaweed (maerl) deposits of the Falkland Islands
Scattered across many foreshore areas around the Falkland Islands (Fig. 1) are fragments of white, limy material derived from carbonate-fixing, marine red algae. Locally, the limy detritus is sufficiently abundant to have built-up substantial beach deposits. In their report accompanying publication of the 1:250 000 scale geological maps of the islands, Aldiss and Edwards (1998) drew attention to the potential importance of these deposits as a source of agricultural lime, particularly in the absence of any other indigenous source of limestone. Very similar material has been exploited elsewhere in the world for both agricultural and horticultural use; for example, sub-tidal banks were extensively dredged in the English Channel off Cornwall and Brittanny. There, the limy, algal debris is referred to generically as Lithothamion, and commercially as maerl. The equivalent material in the Falkland Islands is known locally as calcified seaweed
Dioctahedral mixed K-Na-micas and paragonite in diagenetic to low-temperature metamorphic terrains: bulk rock chemical, thermodynamic and textural constraints
Abstract
Metamorphic mineral assemblages in low-temperature metaclastic rocks often contain paragonite and/or its precursor metastable phase (mixed K-Na-white mica). Relationships between the bulk rock major element chemistries and the formation of paragonite at seven localities from Central and SE-Europe were studied, comparing the bulk chemical characteristics with mineral assemblage, mineral chemical and metamorphic petrological data. Considerable overlaps between the projection fields of bulk chemistries of the Pg-free and Pg-bearing metaclastic rocks indicate significant differences between the actual (as analyzed) and effective bulk chemical compositions. Where inherited, clastic, inert phases/constituents were excluded, it was found that a decrease in Na/(Na+Al*) and in K/(K+Al*) ratios of rocks favors the formation and occurrence of Pg and its precursor phases (Al* denotes here the atomic quantity of aluminum in feldspars, white micas and “pure” hydrous or anhydrous aluminosilicates). In contrast to earlier suggestions, enrichment in Na and/or an increase in Na/K ratio by themselves do not lead to formation of paragonite. Bulk rock chemistries favorable to formation of paragonite and its precursor phases are characterized by enrichment in Al and depletion in Na, K, Ca (and also, Mg and Fe2+). Such bulk rock chemistries are characteristic of chemically “mature” (strongly weathered) source rocks of the pelites and may also be formed by synand post-sedimentary magmatism-related hydrothermal (leaching) activity. What part of the whole rock is active in determining the effective bulk chemistry was investigated by textural examination of diagenetic and anchizone-grade samples. It is hypothesized that although solid phases act as local sources and sinks, transport of elements such as Na through the grain boundaries have much larger communication distances. Sodium-rich white micas nucleate heterogeneously using existing phyllosilicates as templates and are distributed widely on the thin section scale. The results of modeling by THERMOCALC suggest that paragonite preferably forms at higher pressures in low-T metapelites. The stability fields of Pg-bearing assemblages increase, the Pg-in reaction line is shifted towards lower pressures, while the stability field of the Chl-Ms-Ab-Qtz assemblage decreases and is shifted towards higher temperatures with increasing Al* content and decreasing Na/(Na+Al*) and K/(K+Al*) ratios
The Majorana experiment: an ultra-low background search for neutrinoless double-beta decay
The observation of neutrinoless double-beta decay would resolve the Majorana
nature of the neutrino and could provide information on the absolute scale of
the neutrino mass. The initial phase of the Majorana experiment, known as the
Demonstrator, will house 40 kg of Ge in an ultra-low background shielded
environment at the 4850' level of the Sanford Underground Laboratory in Lead,
SD. The objective of the Demonstrator is to determine whether a future 1-tonne
experiment can achieve a background goal of one count per tonne-year in a
narrow region of interest around the 76Ge neutrinoless double-beta decay peak.Comment: Presentation for the Rutherford Centennial Conference on Nuclear
Physic
A genome-wide association study of rheumatoid arthritis without antibodies against citrullinated peptides
Introduction. Rheumatoid arthritis (RA) patients can be classified based on presence or absence of anticitrullinated peptide antibodies (ACPA) in their serum. This heterogeneity among patients may reflect important biological differences underlying the disease process. To date, the majority of genetic studies have focused on the ACPA-positive group. Therefore, our goal was to analyse the genetic risk factors that contribute to ACPA-negative RA. Methods. We performed a large-scale genome-wide association study (GWAS) in three Caucasian European cohorts comprising 1148 ACPA-negative RA patients and 6008 controls. All patients were screened using the Illumina Human Cyto-12 chip, and controls were genotyped using different genome-wide platforms. Population-independent analyses were carried out by means of logistic regression. Meta-analysis with previously published data was performed as follow-up for selected signals (reaching a total of 1922 ACPA-negative RA patients and 7087 controls). Imputation of classical HLA alleles, aminoacid residues and single nucleotide polymorphisms was undertaken. Results. The combined analysis of the studied cohorts resulted in identification of a peak of association in the HLA-region and several suggestive non-HLA associations. Meta-analysis with previous reports confirmed the association of the HLA region with this subset and an observed association in the CLYBL locus remained suggestive. The imputation and deep interrogation of the HLA region led to identification of a two aminoacid model (HLA-B at position 9 and HLA-DRB1 at position 11) that accounted for the observed genome-wide associations in this region. Conclusions. Our study shed light on the influence of the HLA region in ACPA-negative RA and identified a suggestive risk locus for this condition
The MAJORANA DEMONSTRATOR: A Search for Neutrinoless Double-beta Decay of Germanium-76
The observation of neutrinoless double-beta decay would determine whether the
neutrino is a Majorana particle and provide information on the absolute scale
of neutrino mass. The MAJORANA Collaboration is constructing the DEMONSTRATOR,
an array of germanium detectors, to search for neutrinoless double-beta decay
of 76-Ge. The DEMONSTRATOR will contain 40 kg of germanium; up to 30 kg will be
enriched to 86% in 76-Ge. The DEMONSTRATOR will be deployed deep underground in
an ultra-low-background shielded environment. Operation of the DEMONSTRATOR
aims to determine whether a future tonne-scale germanium experiment can achieve
a background goal of one count per tonne-year in a 4-keV region of interest
around the 76-Ge neutrinoless double-beta decay Q-value of 2039 keV.Comment: Submitted to AIP Conference Proceedings, 19th Particles & Nuclei
International Conference (PANIC 2011), Massachusetts Institute of Technology,
Cambridge, MA, USA, July 24-29, 2011; 3 pages, 1 figur
An international effort towards developing standards for best practices in analysis, interpretation and reporting of clinical genome sequencing results in the CLARITY Challenge
BACKGROUND: There is tremendous potential for genome sequencing to improve clinical diagnosis and care once it becomes routinely accessible, but this will require formalizing research methods into clinical best practices in the areas of sequence data generation, analysis, interpretation and reporting. The CLARITY Challenge was designed to spur convergence in methods for diagnosing genetic disease starting from clinical case history and genome sequencing data. DNA samples were obtained from three families with heritable genetic disorders and genomic sequence data was donated by sequencing platform vendors. The challenge was to analyze and interpret these data with the goals of identifying disease causing variants and reporting the findings in a clinically useful format. Participating contestant groups were solicited broadly, and an independent panel of judges evaluated their performance. RESULTS: A total of 30 international groups were engaged. The entries reveal a general convergence of practices on most elements of the analysis and interpretation process. However, even given this commonality of approach, only two groups identified the consensus candidate variants in all disease cases, demonstrating a need for consistent fine-tuning of the generally accepted methods. There was greater diversity of the final clinical report content and in the patient consenting process, demonstrating that these areas require additional exploration and standardization. CONCLUSIONS: The CLARITY Challenge provides a comprehensive assessment of current practices for using genome sequencing to diagnose and report genetic diseases. There is remarkable convergence in bioinformatic techniques, but medical interpretation and reporting are areas that require further development by many groups
- …
