6,013 research outputs found
Generation and remote detection of THz sound using semiconductor superlattices
The authors introduce a novel approach to study the propagation of high
frequency acoustic phonons in which the generation and detection involves two
spatially separated superlattices apart. Propagating modes
of frequencies up to escape from the superlattice where they
are generated and reach the second superlattice where they are detected. The
measured frequency spectrum reveals finite size effects, which can be accounted
for by a continuum elastic model.Comment: Submitted to Applied Physics Letter
T-PHOT version 2.0: improved algorithms for background subtraction, local convolution, kernel registration, and new options
We present the new release v2.0 of T-PHOT, a publicly available software
package developed to perform PSF-matched, prior-based, multiwavelength
deconfusion photometry of extragalactic fields. New features included in the
code are presented and discussed: background estimation, fitting using position
dependent kernels, flux prioring, diagnostical statistics on the residual
image, exclusion of selected sources from the model and residual images,
individual registration of fitted objects. These new options improve on the
performance of the code, allowing for more accurate results and providing
useful aids for diagnostics.Comment: 7 pages, 8 figure
Observation of Surface-Avoiding Waves: A New Class of Extended States in Periodic Media
Coherent time-domain optical experiments on GaAs-AlAs superlattices reveal
the exis-tence of an unusually long-lived acoustic mode at ~ 0.6 THz, which
couples weakly to the environment by evading the sample boundaries. Classical
as well as quantum states that steer clear of surfaces are generally shown to
occur in the spectrum of periodic struc-tures, for most boundary conditions.
These surface-avoiding waves are associated with frequencies outside forbidden
gaps and wavevectors in the vicinity of the center and edge of the Brillouin
zone. Possible consequences for surface science and resonant cavity
ap-plications are discussed.Comment: 16 pages, 3 figure
Plasduino: an inexpensive, general purpose data acquisition framework for educational experiments
Based on the Arduino development platform, Plasduino is an open-source data
acquisition framework specifically designed for educational physics
experiments. The source code, schematics and documentation are in the public
domain under a GPL license and the system, streamlined for low cost and ease of
use, can be replicated on the scale of a typical didactic lab with minimal
effort. We describe the basic architecture of the system and illustrate its
potential with some real-life examples.Comment: 11 pages, 10 figures, presented at the XCIX conference of the
Societ\`a Italiana di Fisic
Modular multilevel matrix converter as solid state transformer for medium and high voltage substations
The use of power converters as solid state transformer is an attractive solution to modernize the power network, but this solution has not been fully addressed for MV and HV substations. This paper presents a customized and simple control for the Modular Multilevel Matrix Converter (M3C), specially conceived for its operation on synchronous ports, which is the case of AC substations. The control allows to transfer bidirectional active power, generate/absorb reactive power and provide ancillary services. The converter is compared to the back-to-back Modular Multilevel Converter (B2B-MMC) where the key performance indicators to carry out the comparison are power efficiency, number of semiconductor devices, passive components required, footprint, voltage cell balance, fault blocking capability and stress of components. The simulation results show the features, performance and attractiveness of the M3C topology in a 33/11 kV, 16 MW substation under different operating conditions, including grid faults and dynamic operation. The M3C presents similar efficiency and performance than the B2B-MMC, but it uses less semiconductor devices, passive components and total cell capacitor energy than the B2B-MMC, reducing cost and footprint. The experimental results show the performance of the M3C under less ideal conditions including a substation transformer saturation and power step response
Exciton Optical Absorption in Self-Similar Aperiodic Lattices
Exciton optical absorption in self-similar aperiodic one-dimensional systems
is considered, focusing our attention on Thue-Morse and Fibonacci lattices as
canonical examples. The absorption line shape is evaluated by solving the
microscopic equations of motion of the Frenkel-exciton problem on the lattice,
in which on-site energies take on two values, according to the Thue-Morse or
Fibonacci sequences. Results are compared to those obtained in random lattices
with the same stechiometry and size. We find that aperiodic order causes the
occurrence of well-defined characteristic features in the absorption spectra
which clearly differ from the case of random systems, indicating a most
peculiar exciton dynamics. We successfully explain the obtained spectra in
terms of the two-center problem. This allows us to establish the origin of all
the absorption lines by considering the self-similar aperiodic lattices as
composed of two-center blocks, within the same spirit of the renormalization
group ideas.Comment: 16 pages in REVTeX 3.0. 2 figures on request to F. D-A
([email protected]
Novel approach to a perfect lens
Within the framework of an exact analytical solution of Maxwell equations in
a space domain, it is shown that optical scheme based on a slab with negative
refractive index () (Veselago lens or Pendry lens) does not possess
focusing properties in the usual sense . In fact, the energy in such systems
does not go from object to its "image", but from object and its "image" to an
intersection point inside a metamaterial layer, or vice versa. A possibility of
applying this phenomenon to a creation of entangled states of two atoms is
discussed.Comment: 4 pages, 6 figure
Thermodynamical fingerprints of fractal spectra
We investigate the thermodynamics of model systems exhibiting two-scale
fractal spectra. In particular, we present both analytical and numerical
studies on the temperature dependence of the vibrational and electronic
specific heats. For phonons, and for bosons in general, we show that the
average specific heat can be associated to the average (power law) density of
states. The corrections to this average behavior are log-periodic oscillations
which can be traced back to the self-similarity of the spectral staircase. In
the electronic case, even if the thermodynamical quantities exhibit a strong
dependence on the particle number, regularities arise when special cases are
considered. Applications to substitutional and hierarchical structures are
discussed.Comment: 8 latex pages, 9 embedded PS figure
- …