1,818 research outputs found

    All-trans retinoic acid inhibits proliferation of intestinal epithelial cells by inhibiting expression of the gene encoding Krüppel-like factor 5

    Get PDF
    AbstractRetinoids are known inhibitors of epithelial cell proliferation. Previous studies indicate that Krüppel-like factor 5 (KLF5) is a pro-proliferative transcription factor. Here, we examined the effect of all-trans retinoid acid (ATRA) on proliferation of the intestinal epithelial cell line, IEC6. Treatment of IEC6 cells with ATRA inhibited their proliferation due to G1 cell cycle arrest. This inhibition was correlated with a decrease in the levels of KLF5 mRNA and promoter activity. In contrast, constitutive expression of KLF5 in stably transfected IEC6 cells with a KLF5-expressing plasmid driven by a viral promoter abrogated the growth inhibitory effect of ATRA. Moreover, ATRA inhibited proliferation of several human colon cancer cell lines with high levels of KLF5 expression but not those with low levels of KLF5 expression. Our results indicate that KLF5 is a potential mediator for the inhibitory effect of ATRA on intestinal epithelial cell proliferation

    Temporal and Spatial Analysis of Clinical and Molecular Parameters in Dextran Sodium Sulfate Induced Colitis

    Get PDF
    Background: Inflammatory bowel diseases (IBD), including mainly ulcerative colitis (UC) and Crohn’s disease (CD), are inflammatory disorders of the gastrointestinal tract caused by an interplay of genetic and environmental factors. Murine colitis model induced by Dextran Sulfate Sodium (DSS) is an animal model of IBD that is commonly used to address the pathogenesis of IBD as well as to test efficacy of therapies. In this study we systematically analyzed clinical parameters, histological changes, intestinal barrier properties and cytokine profile during the colitic and recovery phase. Methods: C57BL/6 mice were administered with 3.5 % of DSS in drinking water for various times. Clinical and histological features were determined using standard criteria. Myeloperoxidase (MPO) activity, transepithelial permeability and proinflammatory mediators were determined in whole colon or proximal and distal parts of colon. Results: As expected after administration of DSS, mice manifest loss of body weight, shortening of colon length and bloody feces. Histological manifestations included shortening and loss of crypts, infiltration of lymphocytes and neutrophil, symptoms attenuated after DSS withdrawal. The MPO value, as inflammation indicator, also increases significantly at all periods of DSS treatment, and even after DSS withdrawal, it still held at very high levels. Trans-mucosal permeability increased during DSS treatment, but recovered to almost control level after DSS withdrawal. The production of proinflammatory mediators by colonic mucosa were enhanced during DSS treatment, and then recovered to pre-treate

    Krüppel-like factor 5 is an important mediator for lipopolysaccharide-induced proinflammatory response in intestinal epithelial cells

    Get PDF
    Lipopolysaccharide (LPS) is a bacterially-derived endotoxin that elicits a strong proinflammatory response in intestinal epithelial cells. It is well established that LPS activates this response through NF-κB. In addition, LPS signals through the mitogen-activated protein kinase (MAPK) pathway. We previously demonstrated that the Krüppel-like factor 5 [KLF5; also known as intestine-enriched Krüppel-like factor (IKLF)] is activated by the MAPK. In the current study, we examined whether KLF5 mediates the signaling cascade elicited by LPS. Treatment of the intestinal epithelial cell line, IEC6, with LPS resulted in a dose- and time-dependent increase in KLF5 messenger RNA (mRNA) and protein levels. Concurrently, mRNA levels of the p50 and p65 subunits of NF-κB were increased by LPS treatment. Pretreatment with the MAPK inhibitor, U0126, or the LPS antagonist, polymyxin B, resulted in an attenuation of KLF5, p50 and p65 NF-κB subunit mRNA levels from LPS treatment. Importantly, suppression of KLF5 by small interfering RNA (siRNA) resulted in a reduction in p50 and p65 subunit mRNA levels and NF-κB DNA binding activity in response to LPS. LPS treatment also led to an increase in secretion of TNF-α and IL-6 from IEC6, both of which were reduced by siRNA inhibition of KLF5. In addition, intercellular adhesion molecule-1 (ICAM-1) levels were increased in LPS-treated IEC6 cells and this increase was associated with increased adhesion of Jurkat lymphocytes to IEC6. The induction of ICAM-1 expression and T cell adhesion to IEC6 by LPS were both abrogated by siRNA inhibition of KLF5. These results indicate that KLF5 is an important mediator for the proinflammatory response elicited by LPS in intestinal epithelial cells

    Dextran Sodium Sulfate (DSS) Induces Colitis in Mice by Forming Nano-Lipocomplexes with Medium-Chain-Length Fatty Acids in the Colon

    Get PDF
    Inflammatory bowel diseases (IBDs), primarily ulcerative colitis and Crohn's disease, are inflammatory disorders caused by multiple factors. Research on IBD has often used the dextran sodium sulfate (DSS)-induced colitis mouse model. DSS induces in vivo but not in vitro intestinal inflammation. In addition, no DSS-associated molecule (free glucose, sodium sulfate solution, free dextran) induces in vitro or in vivo intestinal inflammation. We find that DSS but not dextran associated molecules established linkages with medium-chain-length fatty acids (MCFAs), such as dodecanoate, that are present in the colonic lumen. DSS complexed to MCFAs forms nanometer-sized vesicles ∼200 nm in diameter that can fuse with colonocyte membranes. The arrival of nanometer-sized DSS/MCFA vesicles in the cytoplasm may activate intestinal inflammatory signaling pathways. We also show that the inflammatory activity of DSS is mediated by the dextran moieties. The deleterious effect of DSS is localized principally in the distal colon, therefore it will be important to chemically modify DSS to develop materials beneficial to the colon without affecting colon-targeting specificity

    Global Egr1-miRNAs Binding Analysis in PMA-Induced K562 Cells Using ChIP-Seq

    Get PDF
    Although much is known about microRNAs' regulation in gene expression and their contributions in cell fate, to date, globally lineage-(cell-) specific identification of the binding events between a transcription factor and its targeting microRNA genes is still waiting for elucidation. In this paper, we performed a ChIP-Seq experiment to find the targeting microRNA genes of a transcription factor, Egr1, in human erythroleukemia cell line K562. We found Egr1 binding sites near the promoters of 124 distinct microRNA genes, accounting for about 42% of the miRNAs which have high-confidence predicted promoters (294). We also found EGR1 bind to another 63 pre-miRNAs. We chose 12 of the 187 microRNAs with Egr1 binding sites to perform ChIP-PCR assays and the positive binding signal from ChIP-PCR confirmed the ChIP-Seq results. Our experiments provide the first global binding profile between Egr1 and its targeting microRNA genes in PMA-treated K562 cells, which may facilitate the understanding of pathways controlling microRNA biology in this specific cell line

    Sensory geographies and defamiliarisation: migrant women encounter Brighton Beach

    Get PDF
    This article’s starting point is a sensory, reflexive walk taken on Brighton seafront and beach, by fourteen migrant women and some of their children. It goes on to open up a wider discussion about the cultural politics and affective resonances, for refugees and migrants, of beaches. By discussing their sensory experiences of the beach, we begin to understand their ‘ostranenie’, or defamiliarisation, of making the familiar strange. We also see how evocative such sense-making can be, as the women compare their past lives to this, perceiving their lifeworld through a filter of migrancy. The article goes onto discuss the broader cultural symbolism of beaches, which are a site of contestation over national values, boundaries, and belonging. As well as discussing sensory methodology in this article, and explaining the locale of Brighton Beach itself, it concludes with some wider thinking of the cultural politics of beach spaces and migrant perceptions

    Microbiota Modulate Host Gene Expression via MicroRNAs

    Get PDF
    Microbiota are known to modulate host gene expression, yet the underlying molecular mechanisms remain elusive. MicroRNAs (miRNAs) are importantly implicated in many cellular functions by post-transcriptionally regulating gene expression via binding to the 3′-untranslated regions (3′-UTRs) of the target mRNAs. However, a role for miRNAs in microbiota-host interactions remains unknown. Here we investigated if miRNAs are involved in microbiota-mediated regulation of host gene expression. Germ-free mice were colonized with the microbiota from pathogen-free mice. Comparative profiling of miRNA expression using miRNA arrays revealed one and eight miRNAs that were differently expressed in the ileum and the colon, respectively, of colonized mice relative to germ-free mice. A computational approach was then employed to predict genes that were potentially targeted by the dysregulated miRNAs during colonization. Overlapping the miRNA potential targets with the microbiota-induced dysregulated genes detected by a DNA microarray performed in parallel revealed several host genes that were regulated by miRNAs in response to colonization. Among them, Abcc3 was identified as a highly potential miRNA target during colonization. Using the murine macrophage RAW 264.7 cell line, we demonstrated that mmu-miR-665, which was dysregulated during colonization, down-regulated Abcc3 expression by directly targeting the Abcc3 3′-UTR. In conclusion, our study demonstrates that microbiota modulate host microRNA expression, which could in turn regulate host gene expression

    Butyrate Transcriptionally Enhances Peptide Transporter PepT1 Expression and Activity

    Get PDF
    Background: PepT1, an intestinal epithelial apical di/tripeptide transporter, is normally expressed in the small intestine and induced in colon during chronic inflammation. This study aimed at investigating PepT1 regulation by butyrate, a short-chain fatty acid produced by commensal bacteria and accumulated inside inflamed colonocyte. Results: We found that butyrate treatment of human intestinal epithelial Caco2-BBE cells increased human PepT1 (hPepT1) promoter activity in a dose- and time-dependent manner, with maximal activity observed in cells treated with 5 mM butyrate for 24 h. Under this condition, hPepT1 promoter activity, mRNA and protein expression levels were increased as assessed by luciferase assay, real-time RT-PCR and Western blot, respectively. hPepT1 transport activity was accordingly increased by,2.5-fold. Butyrate did not alter hPepT1 mRNA half-life indicating that butyrate acts at the transcriptional level. Molecular analyses revealed that Cdx2 is the most important transcription factor for butyrate-induced increase of hPepT1 expression and activity in Caco2-BBE cells. Butyrate-activated Cdx2 binding to hPepT1 promoter was confirmed by gel shift and chromatin immunoprecipitation. Moreover, Caco2-BBE cells overexpressing Cdx2 exhibited greater hPepT1 expression level than wild-type cells. Finally, treatment of mice with 5 mM butyrate added to drinking water for 24 h increased colonic PepT1 mRNA and protein expression levels, as well as enhanced PepT1 transport activity in colonic apical membranes vesicles
    corecore