21 research outputs found
Calcitonin Gene-Related Peptide Selectively Relaxes Contractile Responses to Endothelin-1 in Rat Mesenteric Resistance Arteries â–¡ S
ABSTRACT We tested the hypothesis that endothelin-1 (ET-1) modulates sensory-motor nervous arterial relaxation by prejunctional and postjunctional mechanisms. Isolated rat mesenteric resistance arteries were investigated with immunohistochemistry, wiremyography, and pharmacological tools. ET A -and ET B -receptors could be visualized on the endothelium and smooth muscle and on periarterial fibers containing calcitonin gene-related peptide (CGRP). Arterial contractile responses to ET-1 (0.25-16 nM) were not modified by blockade of ET B -receptors, NOsynthase, and cyclooxygenase or desensitization of transient receptor potential cation channel, subfamily V, member 1 (TRPV1) with capsaicin. ET-1 reversed relaxing responses to CGRP in depolarized arteries. This effect was inhibited by ET Aantagonists. It was not selective because ET-1 also reversed relaxing responses to Na-nitroprusside (SNP) and because phenylephrine (PHE; 0.25-16 M) similarly reversed relaxing responses to CGRP or SNP. Conversely, contractile responses to ET-1 were, compared with PHE, hypersensitive to the relaxing effects of the TRPV1-agonist capsaicin and to exogenous CGRP, but not to acetylcholine, forskolin, pinacidil, or SNP. In conclusion, ET-1 does not stimulate sensory-motor nervous arterial relaxation, but ET A -mediated arterial contractions are selectively sensitive to relaxation by the sensory neurotransmitter CGRP. This does not involve NO, cAMP, or ATP-sensitive K Ï© channels
Antihypertensive Treatment Differentially Affects Vascular Sphingolipid Biology in Spontaneously Hypertensive Rats
We have previously shown that essential hypertension in humans and spontaneously hypertensive rats (SHR), is associated with increased levels of ceramide and marked alterations in sphingolipid biology. Pharmacological elevation of ceramide in isolated carotid arteries of SHR leads to vasoconstriction via a calcium-independent phospholipase A2, cyclooxygenase-1 and thromboxane synthase-dependent release of thromboxane A2. This phenomenon is almost absent in vessels from normotensive Wistar Kyoto (WKY) rats. Here we investigated whether lowering of blood pressure can reverse elevated ceramide levels and reduce ceramide-mediated contractions in SHR. Methods and Findings
For this purpose SHR were treated for 4 weeks with the angiotensin II type 1 receptor antagonist losartan or the vasodilator hydralazine. Both drugs decreased blood pressure equally (SBP untreated SHR: 191±7 mmHg, losartan: 125±5 mmHg and hydralazine: 113±14 mmHg). The blood pressure lowering was associated with a 20–25% reduction in vascular ceramide levels and improved endothelial function of isolated carotid arteries in both groups. Interestingly, losartan, but not hydralazine treatment, markedly reduced sphingomyelinase-induced contractions. While both drugs lowered cyclooxygenase-1 expression, only losartan and not hydralazine, reduced the endothelial expression of calcium-independent phospholipase A2. The latter finding may explain the effect of losartan treatment on sphingomyelinase-induced vascular contraction. Conclusion
In summary, this study corroborates the importance of sphingolipid biology in blood pressure control and specifically shows that blood pressure lowering reduces vascular ceramide levels in SHR and that losartan treatment, but not blood pressure lowering per se, reduces ceramide-mediated arterial contractions
Stimuli of Sensory-Motor Nerves Terminate Arterial Contractile Effects of Endothelin-1 by CGRP and Dissociation of ET-1/ETA-Receptor Complexes
Endothelin-1 (ET-1), a long-acting paracrine mediator, is implicated in cardiovascular diseases but clinical trials with ET-receptor antagonists were not successful in some areas. We tested whether the quasi-irreversible receptor-binding of ET-1 (i) limits reversing effects of the antagonists and (ii) can be selectively dissociated by an endogenous counterbalancing mechanism.-receptor complexes.-receptors by ET-1 (i) occur at an antagonist-insensitive site of the receptor and (ii) are selectively terminated by endogenously released CGRP. Hence, natural stimuli of sensory-motor nerves that stimulate release of endogenous CGRP can be considered for therapy of diseases involving ET-1
Impaired flow-induced arterial remodeling in DOCA-salt hypertensive rats
Arteries from young healthy animals respond to chronic changes in blood flow and blood pressure by structural remodeling. We tested whether the ability to respond to decreased (-90%) or increased (+100%) blood flow is impaired during the development of deoxycorticosterone acetate (DOCA)-salt hypertension in rats, a model for an upregulated endothelin-1 system. Mesenteric small arteries (MrA) were exposed to low blood flow (LF) or high blood flow (HF) for 4 or 7 weeks. The bioavailability of vasoactive peptides was modified by chronic treatment of the rats with the dual neutral endopeptidase (NEP)/endothelin-converting enzyme (ECE) inhibitor SOL1. After 3 or 6 weeks of hypertension, the MrA showed hypertrophic arterial remodeling (3 weeks: media cross-sectional area (mCSA): 10 +/- 1 x 10(3) to 17 +/- 2 x 10(3) mu m(2); 6 weeks: 13 +/- 2 x 10(3) to 24 +/- 3 x 10(3) mu m(2)). After 3, but not 6, weeks of hypertension, the arterial diameter was increased (empty set: 385 +/- 13 to 463 +/- 14 mu m). SOL1 reduced hypertrophy after 3 weeks of hypertension (mCSA: 6 x 10(3) +/- 1 x 10(3) mu m(2)). The diameter of the HF arteries of normotensive rats increased (empty set: 463 +/- 22 mu m) but no expansion occurred in the HF arteries of hypertensive rats (empty set: 471 +/- 16 mu m). MrA from SOL1-treated hypertensive rats did show a significant diameter increase (empty set: 419 +/- 13 to 475 +/- 16 mu m). Arteries exposed to LF showed inward remodeling in normotensive and hypertensive rats (mean empty set between 235 and 290 mu m), and infiltration of monocyte/ macrophages. SOL1 treatment did not affect the arterial diameter of LF arteries but reduced the infiltration of monocyte/ macrophages. We show for the first time that flow-induced remodeling is impaired during the development of DOCA-salt hypertension and that this can be prevented by chronic NEP/ECE inhibition. Hypertension Research (2012) 35, 1093-1101; doi:10.1038/hr.2012.94; published online 12 July 201
Dual neural endopeptidase/endothelin-converting [corrected] enzyme inhibition improves endothelial function in mesenteric resistance arteries of young spontaneously hypertensive rats
Background: Endothelin-1 (ET1) is a potent vasoconstrictor peptide with pro-mitogenic and pro-inflammatory properties and is therefore of interest in the development of endothelial dysfunction, endothelium-dependent flow-related remodeling, and hypertension-related remodeling. ET1 can be formed through cleavage of big ET1 by endothelin-converting enzyme (ECE) and neutral endopeptidase (NEP). Method: We investigated whether the dual NEP/ECE inhibitor SOL1 improves resistance artery function and structure in 12 weeks old spontaneously hypertensive rats (SHRs) and whether arterial structural responses to decreased (-90%) or increased (+100%) blood flow are impaired in young SHRs. To this end two groups of SHRs received chronic 4-week treatment at two different time points (4-8 and 8-12 weeks) prior to the experiment. We compared in-vitro effects of cyclo-oxygenase inhibition (1 mu mol/l indomethacine), nitric oxide synthase inhibition (100 mu mol/l N-omega-L-nitro arginine methyl ester), and stimulation of the endothelium by 0.001-10 mu mol/l acetylcholine (ACh) in isolated third-order mesenteric arteries of SHRs and aged-matched Wistar-Kyoto (WKY) rats. Results: SOL1 had no effect on blood pressure in SHRs or WKY rats. ACh caused biphasic effects in mesenteric arteries of SHRs. The contractile component (endothelium-derived contractile factor) was absent in WKY and abolished by acute indomethacin administration or chronic SOL1 treatment. Endothelium-derived nitric oxide-type responses did not differ in both strains and were not influenced by SOL1 treatment. Endothelium-derived hyperpolarizing factor-type responses were severely impaired in SHRs as compared to WKY rats and were normalized by chronic SOL1 treatment. In first-order mesenteric arteries, outward flow-induced remodeling was impaired in SHRs. Chronic SOL1 treatment did not restore this response. Conclusion: Thus chronic SOL1 treatment during the development of hypertension in SHRs has no effect on blood pressure but improves several aspects of endothelium-dependent vasomotor responses but not arterial remodeling
The effect of endothelium-specific <i>Ass</i> deletion on relaxation responses of saphenous arteries of healthy and diabetic male mice.
<p>Relaxation of K<sup>+</sup> (40 mM)-pre-contracted saphenous arteries of 12- (panel A) and 34-week-old (panel B) healthy and 22-week-old diabetic (panel C) male mice to ACh (0.01–10 µM) was determined by wire myography. Black squares: control mice; white circles: Ass-KO<sup>Tie2</sup>. All arteries were treated with INDO (10 µM). Values are shown as means ± SEM (n = 4–8; for the number of animals per individual experiment, see <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0102264#pone-0102264-t001" target="_blank">Table 1</a>). **P<0.01 vs. control (unpaired t-test).</p
Expression of ASS protein in saphenous arteries of male control (panel A) and Ass-KO<sup>Tie2</sup> (panel C) mice.
<p>The arrow indicates endothelial expression in control animals (panel A) and absence of endothelial expression in Ass-KO<sup>Tie2</sup> mice (panel C). Panels B and D represent the corresponding H&E staining of a serial section to demonstrate the presence of intact endothelium.</p