113 research outputs found

    Phagocytosis and Phagosomal Fate of Surface-Modified Microparticles in Dendritic Cells and Macrophages

    Get PDF
    Purpose. We compared cationic, polyamine-coated microparticles (MPs) and anionic, protein-coated MPs with respect to their phagocytosis and phagosomal fate in dendritic cells (DCs) and macrophages (MΦ). Methods. Polystyrene MPs were surface modified by covalent coupling with fluorescein isothiocyanate-labeled polyamines or proteins. Phagocytosis of MP and the pH of their intracellular microenvironment was assessed in human-derived DCs and MΦ in a fluorescence plate reader. Visualization of MP phagocytosis in DCs was performed by transmission electron microscopy. Results. Phagocytosis of bovine serum albumin-coated MPs was low with significant differences between DC and MΦ, whereas phagocytosis of IgG-coated MPs was significantly enhanced in both cell types. Phagocytosis of both particle types resulted in an acidified phagosomal microenvironment (pH 4.6-5.1). In contrast, cationic, polyamine-coated MPs were equally phagocytosed by DCs and MΦ to a high extent and showed lower degrees of acidification (pH 6.0-6.8) in the phagosomal microenvironment. Transmission electron microscopy examination demonstrated all phagocytosed particles to be surrounded by a phagosomal membrane, which was more tightly apposed to the surface of cationic MPs and more loosely to bovine serum albumin-coated MPs. Conclusion. Phagocytosis of cationic, polyamine-coated MPs is suggested to lead to diminished phagosomal acidification. Thus, cationic MP are potential carriers that may display beneficial features for the intracellular delivery of immunomodulating therapeutics and their protection against lysosomal degradatio

    Composition and Surface Charge of DNA-Loaded Microparticles Determine Maturation and Cytokine Secretion in Human Dendritic Cells

    Get PDF
    Purpose. Biodegradable microparticles prepared from poly(lactide) (PLA) and poly(lactide-co-glycolide) (PLGA) have been shown to be promising carrier systems for vaccine delivery. Here, we have investigated the capacity of different PLA and PLGA microparticle formulations to induce stimulation of human blood monocyte-derived dendritic cells (DCs). Methods. Stimulation of human derived dendritic cells by plain microparticles were compared with microparticles loaded with plasmid DNA or double-stranded salmon DNA either by encapsulation or adsorption to the surface of cationic microparticles. Stimulation of DCs was monitored by the up-regulation of surface maturation markers CD83 and CD86 and the secretion of IL-12 and TNF-α. Results. Slowly degrading PLA microparticles did not induce any detectable stimulation or activation of DCs. In contrast, fast degrading PLGA microparticles were able to influence DC maturation and cytokine secretion dependent on their surface charge. Anionic PLGA microparticles induced an up-regulation of CD83 and high TNF-α secretion, which was further enhanced up to the level of the potent stimulator lipopolysaccharide (LPS) when plasmid DNA was encapsulated. Moreover, the secretion of significant amounts of IL-12 was observed. Cationic PLGA microparticles induced an up-regulation of CD86 and moderate TNF-α secretion, but no IL-12 secretion, with no additional effects in the presence of plasmid DNA. Conclusions. The data suggest that the composition and charge of biodegradable DNA-loaded microparticles profoundly influences maturation and cytokine secretion in DCs. Thus, the individual formulation of microparticles used as a vaccine carrier system might considerably influence the profile of the immune respons

    Differentiation Restricted Endocytosis of Cell Penetrating Peptides in MDCK Cells Corresponds with Activities of Rho-GTPases

    Get PDF
    Purpose: Cellular entry of biomacromolecules is restricted by the barrier function of cell membranes. Tethering such molecules to cell penetrating peptides (CPPs) that can translocate cell membranes has opened new horizons in biomedical research. Here, we investigate the cellular internalization of hCT(9-32)-br, a human calcitonin derived branched CPP, and SAP, a γ-zein related sequence. Methods: Internalization of fluorescence labelled CPPs was performed with both proliferating and confluent MDCK cells by means of confocal laser scanning microscopy (CLSM) and fluorescence activated cell sorting (FACS) using appropriate controls. Internalization was further elaborated in an inflammatory, IFN-γ/TNF-αa induced confluent MDCK model mimicking inflammatory epithelial pathologies. Activities of active form Rho-GTPases (Rho-A and Rac-1) in proliferating and confluent MDCK cells were monitored by pull-down assay and Western blot analysis. Results: We observed marked endocytic uptake of the peptides into proliferating MDCK by a process suggesting both lipid rafts and clathrin-coated pits. In confluent MDCK, however, we noted a massive but compound-unspecific slow-down of endocytosis. This corresponded with a down-regulation of endocytosis by Rho-GTPases, previously identified to be intimately involved in endocytic traffic. In fact, we found endocytic internalization to relate with active Rho-A; vice versa, MDCK cell density, degree of cellular differentiation and endocytic slow-down were found to relate with active Rac-1. To our knowledge, this is the first study to cast light on the previously observed differentiation restricted internalization of CPPs into epithelial cell models. In the inflammatory IFN-γ/TNF-αa induced confluent MDCK model mimicking inflammatory epithelial pathologies, CPP internalization was enhanced in a cytokine concentration-dependent way resulting in maximum enhancement rates of up to 90%. We suggest a cytokine induced redistribution of lipid rafts in confluent MDCK to cause this enhancement. Conclusion: Our findings emphasize the significance of differentiated cell models in the study of CPP internalization and point towards inflammatory epithelial pathologies as potential niche for the application of CPPs for cellular deliver

    Cellular Uptake But Low Permeation of Human Calcitonin-Derived Cell Penetrating Peptides and Tat(47-57) Through Well-Differentiated Epithelial Models

    Get PDF
    Purpose. To investigate whether cell penetrating peptides (CPP) derived from human calcitonin (hCT) possess, in addition to cellular uptake, the capacity to deliver their cargo through epithelial barriers. Methods. Cellular uptake of hCT(9-32) and permeation of six hCT-derived peptides, namely, hCT(9-32), hCT(12-32), hCT(15-32), hCT(18-32), hCT(21-32), and a random sequence of hCT(9-32) were evaluated in fully organized confluent Madin-Darby canine kidney (MDCK), Calu-3, and TR146 cell culture models. For comparison, Tat(47-57) and penetratin(43-58) were investigated. The peptides were N-terminally labeled with carboxyfluorescein (CF). Uptake in the well-differentiated epithelial models was observed by confocal laser scanning microscopy (CLSM), whereas permeation through the models was analyzed by reversed-phase (RP)-HPLC. Results. In MDCK epithelium hCT(9-32), Tat(47-57) and penetratin(43-58) demonstrated punctuated cytoplasmic distribution. In Calu-3, Tat(47-57) and penetratin(43-58) were simultaneously localized in a punctuated cytoplasmic and paracellular distribution, whereas hCT(9-32) showed strict paracellular distribution. By contrast, in TR146 cells, Tat(47-57) was located strictly paracellularily, whereas penetratin(43-58) showed a punctuated cytoplasmic pattern and hCT(9-32) both. The transepithelial permeability of all tested peptides and their cargo was lower than that of paracellular markers. Conclusions. The CPP uptake pattern depends on both the type of peptide and the cell culture model. In general, the investigated CPP have no apparent potential for systemic drug delivery across epithelia. Nevertheless, distinct patterns of cellular distribution may offer a potential for localized epithelial deliver

    Ligand-Specific Targeting of Microspheres to Phagocytes by Surface Modification with Poly(L-Lysine)-Grafted Poly(Ethylene Glycol) Conjugate

    Get PDF
    Purpose. The purpose of this study was to demonstrate specific receptor-mediated targeting of phagocytes by functional surface coatings of microparticles, shielding from nonspecific phagocytosis and allowing ligand-specific interactions via molecular recognition. Methods. Coatings of the comb polymer poly(L-lysine)-g-poly(ethylene glycol) (PLL-g-PEG) were investigated for potential to inhibit 1) nonspecific spreading of human blood-derived macrophages (MOs) and dendritic cells (DCs) on glass and 2) nonspecific phagocytosis of PLL-g-PEG-coated, carboxylated polystyrene (PS) or biodegradable poly(D,L-lactide-co-glycolide) (PLGA) microspheres. Coating was performed by adsorption of positively charged PLL-g-PEG on negatively charged microparticles or plasma-cleaned glass through electrostatic interaction. The feasibility of ligand-specific interactions was tested with a model ligand, RGD, conjugated to PEG chains of PLL-g-PEG to form PLL-g-PEG-RGD and compared with inactive ligand conjugate, PLL-g-PEG-RDG. Results. Coatings with PLL-g-PEG largely impaired the adherence and spreading of MOs and DCs on glass. The repellent character of PLL-g-PEG coatings drastically reduced phagocytosis of coated PS and PLGA microparticles to 10% in presence of serum. With both MOs and DCs, we observed ligand-specific interactions with PLL-g-PEG-RGD coatings on glass and PS and PLGA microspheres. Ligand specificity was abolished when using inactive ligand conjugate PLL-g-PEG-RDG, whereas repellency of coating was maintained. Conclusions. Coatings of PLL-g-PEG-ligand conjugates provide a novel technology for ligand specific targeting of microspheres to MOs and DCs while reducing nonspecific phagocytosi

    Insulin-like Growth Factor I—Releasing Alginate-Tricalciumphosphate Composites for Bone Regeneration

    Get PDF
    Purpose: Development and characterization of an in situ-forming, osteoconductive, and growth factor-releasing bone implant. Methods: Injectable in situ-forming scaffolds were prepared from a 2% (m/v) alginate solution, tricalciumphosphate (TCP) granules, and poly(lactide-co-glycolide) microspheres (MS), loaded with the osteoinductive growth factor insulin-like growth factor I (IGF-I). Scaffolds were prepared by mixing the components followed by hydrogel formation through calcium carbonate-induced physical cross-linking of the alginate at slightly acidic pH. Physical-chemical properties and cell biocompatibility using osteoblast-like cells (MG-63 and Saos-2) of these scaffolds were investigated. Results: The addition of TCP to the alginate resulted in reduced swelling and gelation time and an increase in stiffness. Osteoblast-like cells (MG-63 and Saos-2) did not show toxic reactions and adhered circumferentially to the TCP granules surface. The addition of the IGF-I MS resulted in an up to sevenfold increased proliferation rate of MG-63 cells as compared to scaffold preparations without IGF-I MS. The alkaline phosphate (ALP) activity—a parameter for osteblastic activity—increased with increasing amounts of TCP in Saos-2 loaded composite scaffolds. Conclusions: A prototype in situ-hardening composite system for conformal filling of bone defects supporting osteoblastic activity for further clinical testing in relevant fracture models was developed and characterize

    Cellular Internalization of Human Calcitonin Derived Peptides in MDCK Monolayers: A Comparative Study with Tat(47-57) and Penetratin(43-58)

    Get PDF
    Purpose. The objective of this study was to evaluate key motif requirements of human calcitonin (hCT)-derived peptides for the permeation through the plasma membrane of MDCK monolayers, as epithelial model. Methods. Truncated and sequence-modified fluorescent-labeled hCT-derived peptides were synthesized through Fmoc chemistry. Peptide uptake by confluent MDCK was observed by confocal laser scanning microscopy. The cytotoxic effect of the peptides on cellular integrity was followed by LDH release. For direct comparison we covered the cellular uptake of established cell penetrating peptides, Tat(47-57) and penetratin(43-58). Results. Truncated sequences of hCT, from hCT(9-32) to hCT(18-32), penetrated the plasma membrane and demonstrated a sectoral, punctuated cytoplasmic distribution. The uptake process appeared to be temperature-, time- and concentration-dependent. Amino acid modifications of hCT(18-32) indicated that both the proline in position 23 and the positive charge of lysine in position 18 are crucial for peptide uptake. The reverse sequence hCT(32-18) did not penetrate the membrane, indicating the importance of sequence orientation. Tat(47-57) and penetratin(43-58) showed a similar punctuated cytoplasmic distribution in MDCK and HeLa cell lines. No relevant toxicity was observed. Conclusions. Selected hCT-derived peptides have cell penetrating properties. The uptake mechanism seems to involve an endocytic pathwa

    Transfer of Lipophilic Markers from PLGA and Polystyrene Nanoparticles to Caco-2 Monolayers Mimics Particle Uptake

    Get PDF
    Purpose. The objective of this study was to evaluate nanoparticle uptake by the Caco-2 monolayer model in vitro. Special emphasis was placed on the localization and the quantification of the uptake of fluorescently labeled polystyrene and poly(lactic-co-glycolic acid) (PLGA) nanoparticles. Methods. Intracellular fluorescence was localized by fluorescence and confocal laser scanning microscopy. Particle uptake was quantified either directly, by counting internalized nanoparticles after separation from the Caco-2 monolayers, or indirectly, by extraction of the lipophilic fluorescence marker. In vitro release studies of lipophilic markers from nanoparticles were performed in standard buffer systems and buffer systems supplemented with liposomes. Results. Instead of uptake of polystyrene and PLGA nanoparticles by Caco-2 monolayers an efficient transfer of lipophilic fluorescence markers from nanoparticles into Caco-2 cells with subsequent staining of intracellular lipophilic compartments was observed. Whereas in standard buffer no release of fluorescent marker from polystyrene and PLGA nanoparticles was observed, the release studies using liposome dispersions as receiver revealed an efficient transfer of fluorescent marker into the liposome dispersion. Conclusions. The results suggest that the deceptive particle uptake is caused by a collision-induced process facilitating the transfer of lipophilic fluorescent marker by formation of a complex between the nanoparticles and the biomembranes. Diffusion of the marker within this complex into lipophilic compartments of the cell strongly affects quantitative evaluation of particle uptak

    A Protective Allergy Vaccine Based on CpG- and Protamine-Containing PLGA Microparticles

    Get PDF
    Purpose: Allergen-specific immunotherapy (SIT) requires dozens of subcutaneous injections over 3 to 5years in order to control IgE-mediated hypersensitivity, which is a T-helper 2 (Th2)-associated pathology. This study investigates the use of poly(lactide-co-glycolide) (PLGA) microparticles combined with immunostimulatory oligodeoxynucleotide (CpG), as well as protamine in SIT. Materials and Methods: We prepared microparticle formulations with the major allergen of bee venom, phospholipase A2 (PLA2), and analyzed the effect of co-encapsulated or admixed CpG in both naïve and bee venom allergic mice. Results: Mice immunized with microparticles containing only PLA2 induced weak antibody responses. In contrast, the combination with CpG resulted in strong PLA2-specific antibody responses. The presence of CpG was required for the induction of the Th1-associated isotype IgG2a, and the titers of IgG2a in sensitized mice correlated with a better protection against an allergen challenge. The effect of CpG was further strengthened when protamine was co-encapsulated for complexation of CpG. Conclusions: This study shows that allergen-specific immunotherapy with a PLGA-based allergen-delivery system in combination with CpG enhanced the induction of protective IgG2a immune responses. This may improve SIT compliance and shorten its duratio
    • …
    corecore