54 research outputs found

    Immune features that afford protection from clinical disease versus sterilizing immunity to Bordetella pertussis infection in a nonhuman primate model of whooping cough

    Get PDF
    The respiratory bacterial infection caused by Bordetella pertussis (whooping cough) is the only vaccine-preventable disease whose incidence has been increasing over the last 3 decades. To better understand the resurgence of this infection, a baboon animal model of pertussis infection has been developed. Naïve baboons that recover from experimental pertussis infection are resistant both to clinical disease and to airway colonization when re-challenged. In contrast, animals vaccinated with acellular pertussis vaccine and experimentally challenged do not develop disease, but airways remain colonized for 4-6 weeks. We explored the possibility that the IgG antibody response to pertussis infection is qualitatively different from antibodies induced by acellular pertussis vaccination. IgG was purified from pertussis-convalescent baboons shown to be resistant to pertussis disease and airway colonization. Purified IgG contained high titers to pertussis toxin, pertactin, and filamentous hemagglutinin. This pertussis-immune IgG or control IgG was passively transferred to naïve, juvenile baboons before experimental airway pertussis inoculation. The control animal that received normal IgG developed a typical symptomatic infection including leukocytosis, cough and airway colonization for 4 weeks. In contrast, baboons that received convalescent IgG maintained normal WBC counts and were asymptomatic. However, despite remaining asymptomatic, their airways were colonized for 4-6 weeks with B. pertussis. All animals developed IgG and IgA anti-pertussis antibody responses. Interestingly, the clearance of B. pertussis from airways coincided with the emergence of a serum anti-pertussis IgA response. These studies demonstrate that passive administration of pertussis-specific IgG from previously infected animals can prevent clinical disease but does not affect prolonged airway colonization with B. pertussis. This outcome is similar to that observed following acellular pertussis vaccination. Understanding immune mechanisms—other than IgG—that are capable of preventing airway colonization with B. pertussis will be critical for developing more effective vaccines to prevent whooping cough

    Highlights of the 11th International Bordetella Symposium: from Basic Biology to Vaccine Development

    Get PDF
    ABSTRACT Pertussis is a severe respiratory disease caused by infection with the bacterial pathogen Bordetella pertussis . The disease affects individuals of all ages but is particularly severe and sometimes fatal in unvaccinated young infants. Other Bordetella species cause diseases in humans, animals, and birds. Scientific, clinical, public health, vaccine company, and regulatory agency experts on these pathogens and diseases gathered in Buenos Aires, Argentina from 5 to 8 April 2016 for the 11th International Bordetella Symposium to discuss recent advances in our understanding of the biology of these organisms, the diseases they cause, and the development of new vaccines and other strategies to prevent these diseases. Highlights of the meeting included pertussis epidemiology in developing nations, genomic analysis of Bordetella biology and evolution, regulation of virulence factor expression, new model systems to study Bordetella biology and disease, effects of different vaccines on immune responses, maternal immunization as a strategy to prevent newborn disease, and novel vaccine development for pertussis. In addition, the group approved the formation of an International Bordetella Society to promote research and information exchange on bordetellae and to organize future meetings. A new Bordetella.org website will also be developed to facilitate these goals

    The contribution of BvgR, RisA, and RisS to global gene regulation, intracellular cyclic-di-GMP levels, motility, and biofilm formation in Bordetella bronchiseptica

    Get PDF
    Bordetella bronchiseptica is a highly contagious respiratory bacterial veterinary pathogen. In this study the contribution of the transcriptional regulators BvgR, RisA, RisS, and the phosphorylation of RisA to global gene regulation, intracellular cyclic-di-GMP levels, motility, and biofilm formation were evaluated. Next Generation Sequencing (RNASeq) was used to differentiate the global gene regulation of both virulence-activated and virulence-repressed genes by each of these factors. The BvgAS system, along with BvgR, RisA, and the phosphorylation of RisA served in cyclic-di-GMP degradation. BvgR and unphosphorylated RisA were found to temporally regulate motility. Additionally, BvgR, RisA, and RisS were found to be required for biofilm formation

    Erratum for Carbonetti <i>et al.</i>, "Highlights of the 11th International Bordetella Symposium: from Basic Biology to Vaccine Development"

    Get PDF
    Este documento es una errata de "Highlights of the 11th International Bordetella Symposium: From basic biology to vaccine development" (ver "Documentos relacionados").Instituto de Biotecnologia y Biologia Molecula

    Macrophages Release Tumor Necrosis Factor Alpha and Interleukin-12 in Response to Intracellular Bacillus anthracis Spores

    No full text
    Herein we report that infection of a murine macrophage cell line with Bacillus anthracis results in the production of tumor necrosis factor alpha and interleukin-12 (IL-12). When infected with B. anthracis spores in combination with lipopolysaccharide, macrophages release increased amounts of IL-12. We found no evidence of inhibition of cytokine responses in macrophages infected with B. anthracis spores

    Pertussis Toxin: A Key Component in Pertussis Vaccines?

    No full text
    B. pertussis is a human-specific pathogen and the causative agent of whooping cough. The ongoing resurgence in pertussis incidence in high income countries is likely due to faster waning of immunity and increased asymptomatic colonization in individuals vaccinated with acellular pertussis (aP) vaccine relative whole-cell pertussis (wP)-vaccinated individuals. This has renewed interest in developing more effective vaccines and treatments and, in support of these efforts, defining pertussis vaccine correlates of protection and the role of vaccine antigens and toxins in disease. Pertussis and its toxins have been investigated by scientists for over a century, yet we still do not have a clear understanding of how pertussis toxin (PT) contributes to disease symptomology or how anti-PT immune responses confer protection. This review covers PT&rsquo;s role in disease and evidence for its protective role in vaccines. Clinical data suggest that PT is a defining and essential toxin for B. pertussis pathogenesis and, when formulated into a vaccine, can prevent disease. Additional studies are required to further elucidate the role of PT in disease and vaccine-mediated protection, to inform the development of more effective treatments and vaccines

    Comparison of Three Whole-Cell Pertussis Vaccines in the Baboon Model of Pertussis

    Full text link
    Clear glass windows replace Stone's signature "Venetian loggia" arches near top of curved facade; The museum was founded in 1956 by the American Craft Council as the Museum of Contemporary Crafts; it was renamed in 2002 and in 2008, moved to 2 Columbus Circle. The new tenant radically altered the building's original design (1964) by Edward Durell Stone, which touched off a preservation battle. The museum's redesign was developed by Brad Cloepfil and his Portland, Oregon-based firm Allied Works Architecture and replaced the original white Vermont marble with a glazed terra-cotta (nacreous ceramic) and glass facade. Stone's signature elements like the "lollypop" shaped piers are still there, but boxed in with fritted glass. The interior was opened up and new slots in the building allow more light. Source: Wikipedia; http://en.wikipedia.org/wiki/Main_Page (accessed 8/5/2013

    Activation of the vrg6 Promoter of Bordetella pertussis by RisA

    No full text
    The BvgAS two-component system positively regulates the expression of the virulence genes of Bordetella pertussis and negatively regulates a second set of genes whose function is unknown. The BvgAS-mediated regulation of the bvg-repressed genes is accomplished through the activation of expression of the negative regulator, BvgR. A second two-component regulatory system, RisAS, is required for expression of the bvg-repressed surface antigens VraA and VraB. We examined the roles of BvgR and RisA in the regulation of four bvg-repressed genes in B. pertussis. Our analyses demonstrated that all four genes are repressed by the product of the bvgR locus and are activated by the product of the risA locus. Deletion analysis of the vrg6 promoter identified the upstream and downstream boundaries of the promoter and, in contrast to previously published results, demonstrated that sequences downstream of the start of transcription are not required for the regulation of expression of vrg6. Gel mobility-shift experiments demonstrated sequence-specific binding of RisA to the vrg6 and vrg18 promoters, and led to the identification of two putative RisA binding sites. Finally, transcriptional analysis and Western blot analysis demonstrated that BvgR regulates neither the expression nor the stability of RisA
    corecore