22 research outputs found
High prevalence of posterior polymorphous corneal dystrophy in the Czech Republic; linkage disequilibrium mapping and dating an ancestral mutation.
Posterior polymorphous corneal dystrophy (PPCD) is a rare autosomal dominant genetically heterogeneous disorder. Nineteen Czech PPCD pedigrees with 113 affected family members were identified, and 17 of these kindreds were genotyped for markers on chromosome 20p12.1- 20q12. Comparison of haplotypes in 81 affected members, 20 unaffected first degree relatives and 13 spouses, as well as 55 unrelated controls, supported the hypothesis of a shared ancestor in 12 families originating from one geographic location. In 38 affected individuals from nine of these pedigrees, a common haplotype was observed between D20S48 and D20S107 spanning approximately 23 Mb, demonstrating segregation of disease with the PPCD1 locus. This haplotype was not detected in 110 ethnically matched control chromosomes. Within the common founder haplotype, a core mini-haplotype was detected for D20S605, D20S182 and M189K2 in all 67 affected members from families 1-12, however alleles representing the core mini-haplotype were also detected in population matched controls. The most likely location of the responsible gene within the disease interval, and estimated mutational age, were inferred by linkage disequilibrium mapping (DMLE+2.3). The appearance of a disease-causing mutation was dated between 64-133 generations. The inferred ancestral locus carrying a PPCD1 disease-causing variant within the disease interval spans 60 Kb on 20p11.23, which contains a single known protein coding gene, ZNF133. However, direct sequence analysis of coding and untranslated exons did not reveal a potential pathogenic mutation. Microdeletion or duplication was also excluded by comparative genomic hybridization using a dense chromosome 20 specific array. Geographical origin, haplotype and statistical analysis suggest that in 14 unrelated families an as yet undiscovered mutation on 20p11.23 was inherited from a common ancestor. Prevalence of PPCD in the Czech Republic appears to be the highest worldwide and our data suggests that at least one other novel locus for PPCD also exists
Attempting to distinguish between endogenous and contaminating cytokeratins in a corneal proteomic study
<p>Abstract</p> <p>Background</p> <p>The observation of cytokeratins (CK's) in mass spectrometry based studies raises the question of whether the identified CK is a true endogenous protein from the sample or simply represents a contaminant. This issue is especially important in proteomic studies of the corneal epithelium where several CK's have previously been reported to mark the stages of differentiation from corneal epithelial stem cell to the differentiated cell.</p> <p>Methods</p> <p>Here we describe a method to distinguish very likely endogenous from uncertain endogenous CK's in a mass spectrometry based proteomic study. In this study the CK identifications from 102 human corneal samples were compared with the number of human CK identifications found in 102 murine thymic lymphoma samples.</p> <p>Results</p> <p>It was anticipated that the CK's that were identified with a frequency of <5%, <it>i.e. </it>in less than one spot for every 20 spots analysed, are very likely to be endogenous and thereby represent a 'biologically significant' identification. CK's observed with a frequency >5% are uncertain endogenous since they may represent true endogenous CK's but the probability of contamination is high and therefore needs careful consideration. This was confirmed by comparison with a study of mouse samples where all identified human CK's are contaminants.</p> <p>Conclusions</p> <p>CK's 3, 4, 7, 8, 11, 12, 13, 15, 17, 18, 19, 20 and 23 are very likely to be endogenous proteins if identified in a corneal study, whilst CK's 1, 2e, 5, 6A, 9, 10, 14 and 16 may be endogenous although some are likely to be contaminants in a proteomic study. Further immunohistochemical analysis and a search of the current literature largely supported the distinction.</p
K14 + Compound niches are present on the mouse cornea early after birth and expand after debridement wounds
Substance P inhibits high urea‐induced apoptosis through the AKT/GSK‐3β pathway in human corneal epithelial cells
The presence and suggested role of mesothelial proteins in the human corneal endothelium
Presence of proteinase inhibitor-9 and granzyme B in healthy and pathological human corneas
Recurrence of posterior polymorphous corneal dystrophy is caused by the overgrowth of the original diseased endothelium
Impact of the Controlled Release of a Connexin 43 Peptide on Corneal Wound Closure in an STZ Model of Type I Diabetes
The alpha-carboxy terminus 1 (αCT1) peptide is a synthetically produced mimetic modified from the DDLEI C-terminus sequence of connexin 43 (Cx43). Previous research using various wound healing models have found promising therapeutic effects when applying the drug, resulting in increased wound healing rates and reduced scarring. Previous data suggested a rapid metabolism rate in vitro, creating an interest in long term release. Using a streptozotocin (STZ) type I diabetic rat model with a surgically induced corneal injury, we delivered αCT1 both directly, in a pluronic gel solution, and in a sustained system, using polymeric alginate-poly-l-ornithine (A-PLO) microcapsules (MC). Fluorescent staining of wound area over a 5 day period indicated a significant increase in wound closure rates for both αCT1 and αCT1 MC treated groups, withαCT1 MC groups showing the most rapid wound closure overall. Analysis of inflammatory reaction to the treatment groups indicated significantly lower levels of both Interferon Inducible T-Cell Alpha Chemoattractant (ITAC) and Tumor Necrosis Factor Alpha (TNFα) markers using confocal quantification and ELISA assays. Additional analysis examining genes selected from the EMT pathway using RT-PCR and Western blotting suggested αCT1 modification of Transforming Growth Factor Beta 2 (TGFβ2), Keratin 8 (Krt8), Estrogen Receptor 1 (Esr1), and Glucose Transporter 4 (Glut4) over a 14 day period. Combined, this data indicated a possible suppression of the inflammatory response by αCT1, leading to increased wound healing rates
Predicted location of the putative mutation causing posterior polymorphous corneal dystrophy on 20p11.23.
<p>Filled triangles show 5% significance level of disease mutation location on chromosome 20 in cM; a 60 kb region between markers D20S182 and M189K21.</p
