10 research outputs found

    Multi-Color Imaging of Magnetic Co/Pt Multilayers

    Get PDF
    We demonstrate for the first time the realization of a spatial resolved two color, element-specific imaging experiment at the free-electron laser facility FERMI. Coherent imaging using Fourier transform holography was used to achieve direct real space access to the nanometer length scale of magnetic domains of Co/Pt heterostructures via the element-specific magnetic dichroism in the extreme ultraviolet spectral range. As a first step to implement this technique for studies of ultrafast phenomena we present the spatially resolved response of magnetic domains upon femtosecond laser excitation

    Sub 15 fs X ray pump and X ray probe experiment for the study of ultrafast magnetization dynamics in ferromagnetic alloys

    Get PDF
    In this paper, we present a new setup for the measurement of element specific ultrafast magnetization dynamics in ferromagnetic thin films with a sub 15 fs time resolution. Our experiment relies on a split and delay approach which allows us to fully exploit the shortest X rays pulses delivered by X ray Free Electrons Lasers close to the attosecond range , in an X ray pump X ray probe geometry. The setup performance is demonstrated by measuring the ultrafast elemental response of Ni and Fe during demagnetization of ferromagnetic Ni and Ni80Fe20 Permalloy samples upon resonant excitation at the corresponding absorption edges. The transient demagnetization process is measured in both reflection and transmission geometry using, respectively, the transverse magneto optical Kerr effect T MOKE and the Faraday effect as probing mechanism

    Generating circularly polarized radiation in the extreme ultraviolet spectral range at the free electron laser FLASH

    Get PDF
    A new device for polarization control at the free electron laser facility FLASH1 at DESY has been commissioned for user operation. The polarizer is based on phase retardation upon reflection off metallic mirrors. Its performance is characterized in three independent measurements and confirms the theoretical predictions of efficient and broadband generation of circularly polarized radiation in the extreme ultraviolet spectral range from 35 eV to 90 eV. The degree of circular polarization reaches up to 90% while maintaining high total transmission values exceeding 30%. The simple design of the device allows straightforward alignment for user operation and rapid switching between left and right circularly polarized radiation

    Time Resolved XUV Absorption Spectroscopy and Magnetic Circular Dichroism at the Ni M 2,M 3 Edges

    Get PDF
    Ultrashort optical pulses can trigger a variety of non equilibrium processes in magnetic thin films affecting electrons and spins on femtosecond timescales. In order to probe the charge and magnetic degrees of freedom simultaneously, we developed an X ray streaking technique that has the advantage of providing a jitter free picture of absorption cross section changes. In this paper, we present an experiment based on this approach, which we performed using five photon probing energies at the Ni M2,3 edges. This allowed us to retrieve the absorption and magnetic circular dichroism time traces, yielding detailed information on transient modifications of electron and spin populations close to the Fermi level. Our findings suggest that the observed absorption and magnetic circular dichroism dynamics both depend on the extreme ultraviolet XUV probing wavelength, and can be described, at least qualitatively, by assuming ultrafast energy shifts of the electronic and magnetic elemental absorption resonances, as reported in recent work. However, our analysis also hints at more complex changes, highlighting the need for further experimental and theoretical studies in order to gain a thorough understanding of the interplay of electronic and spin degrees of freedom in optically excited magnetic thin film

    Time-Resolved XUV Absorption Spectroscopy and Magnetic Circular Dichroism at the Ni M2,3-Edges

    No full text
    Ultrashort optical pulses can trigger a variety of non-equilibrium processes in magnetic thin films affecting electrons and spins on femtosecond timescales. In order to probe the charge and magnetic degrees of freedom simultaneously, we developed an X-ray streaking technique that has the advantage of providing a jitter-free picture of absorption cross-section changes. In this paper, we present an experiment based on this approach, which we performed using five photon probing energies at the Ni M2,3-edges. This allowed us to retrieve the absorption and magnetic circular dichroism time traces, yielding detailed information on transient modifications of electron and spin populations close to the Fermi level. Our findings suggest that the observed absorption and magnetic circular dichroism dynamics both depend on the extreme ultraviolet (XUV) probing wavelength, and can be described, at least qualitatively, by assuming ultrafast energy shifts of the electronic and magnetic elemental absorption resonances, as reported in recent work. However, our analysis also hints at more complex changes, highlighting the need for further experimental and theoretical studies in order to gain a thorough understanding of the interplay of electronic and spin degrees of freedom in optically excited magnetic thin films
    corecore