1,242 research outputs found

    Dark Matter Prediction from Canonical Quantum Gravity with Frame Fixing

    Full text link
    We show how, in canonical quantum cosmology, the frame fixing induces a new energy density contribution having features compatible with the (actual) cold dark matter component of the Universe. First we quantize the closed Friedmann-Robertson-Walker (FRW) model in a sinchronous reference and determine the spectrum of the super-Hamiltonian in the presence of ultra-relativistic matter and a perfect gas contribution. Then we include in this model small inhomogeneous (spherical) perturbations in the spirit of the Lemaitre-Tolman cosmology. The main issue of our analysis consists in outlining that, in the classical limit, the non-zero eigenvalue of the super-Hamiltonian can make account for the present value of the dark matter critical parameter. Furthermore we obtain a direct correlation between the inhomogeneities in our dark matter candidate and those one appearing in the ultra-relativistic matter.Comment: 5 pages, to appear on Modern Physics Letters

    SU(2) gauge theory of gravity with topological invariants

    Full text link
    The most general gravity Lagrangian in four dimensions contains three topological densities, namely Nieh-Yan, Pontryagin and Euler, in addition to the Hilbert-Palatini term. We set up a Hamiltonian formulation based on this Lagrangian. The resulting canonical theory depends on three parameters which are coefficients of these terms and is shown to admit a real SU(2) gauge theoretic interpretation with a set of seven first-class constraints. Thus, in addition to the Newton's constant, the theory of gravity contains three (topological) coupling constants, which might have non-trivial imports in the quantum theory.Comment: Based on a talk at Loops-11, Madrid, Spain; To appear in Journal of Physics: Conference Serie

    Dystonia: sparse synapses for D2 receptors in striatum of a DYT1 knock-out mouse model

    Get PDF
    Dystonia pathophysiology has been partly linked to downregulation and dysfunction of dopamine D2 receptors in striatum. We aimed to investigate the possible morpho-structural correlates of D2 receptor downregulation in the striatum of a DYT1 Tor1a mouse model. Adult control Tor1a+/+ and mutant Tor1a+/− mice were used. The brains were perfused and free-floating sections of basal ganglia were incubated with polyclonal anti-D2 antibody, followed by secondary immune-fluorescent antibody. Confocal microscopy was used to detect immune-fluorescent signals. The same primary antibody was used to evaluate D2 receptor expression by western blot. The D2 receptor immune-fluorescence appeared circumscribed in small disks (~0.3–0.5 μm diameter), likely representing D2 synapse aggregates, densely distributed in the striatum of Tor1a+/+ mice. In the Tor1a+/− mice the D2 aggregates were significantly smaller (μm2 2.4 ± SE 0.16, compared to μm2 6.73 ± SE 3.41 in Tor1a+/+) and sparse, with ~30% less number per microscopic field, value correspondent to the amount of reduced D2 expression in western blotting analysis. In DYT1 mutant mice the sparse and small D2 synapses in the striatum may be insufficient to “gate” the amount of presynaptic dopamine release diffusing in peri-synaptic space, and this consequently may result in a timing and spatially larger nonselective sphere of influence of dopamine action

    Quantum realizations of Hilbert-Palatini second-class constraints

    Full text link
    In a classical theory of gravity, the Barbero-Immirzi parameter (η\eta) appears as a topological coupling constant through the Lagrangian density containing the Hilbert-Palatini term and the Nieh-Yan invariant. In a quantum framework, the topological interpretation of η\eta can be captured through a rescaling of the wavefunctional representing the Hilbert-Palatini theory, as in the case of the QCD vacuum angle. However, such a rescaling cannot be realized for pure gravity within the standard (Dirac) quantization procedure where the second-class constraints of Hilbert-Palatini theory are eliminated beforehand. Here we present a different treatment of the Hilbert-Palatini second-class constraints in order to set up a general rescaling procedure (a) for gravity with or without matter and (b) for any choice of gauge (e.g. time gauge). The analysis is developed using the Gupta-Bleuler and the coherent state quantization methods.Comment: Published versio

    Gravity from a fermionic condensate of a gauge theory

    Full text link
    The most prominent realization of gravity as a gauge theory similar to the gauge theories of the standard model comes from enlarging the gauge group from the Lorentz group to the de Sitter group. To regain ordinary Einstein-Cartan gravity the symmetry must be broken, which can be accomplished by known quasi-dynamic mechanisms. Motivated by symmetry breaking models in particle physics and condensed matter systems, we propose that the symmetry can naturally be broken by a homogenous and isotropic fermionic condensate of ordinary spinors. We demonstrate that the condensate is compatible with the Einstein-Cartan equations and can be imposed in a fully de Sitter invariant manner. This lends support, and provides a physically realistic mechanism for understanding gravity as a gauge theory with a spontaneously broken local de Sitter symmetry.Comment: 16 page

    Generalized Chern-Simons Modified Gravity in First-Order Formalism

    Full text link
    We propose a generalization of Chern-Simons (CS) modified gravity in first-order formalism. CS modified gravity action has a term that comes from the chiral anomaly which is Pontryagin invariant. First-order CS modified gravity is a torsional theory and in a space-time with torsion the chiral anomaly includes a torsional topological term called Nieh-Yan invariant. We generalize the CS modified gravity by adding the Nieh-Yan term to the action and find the effective theory. We compare the generalized theory with the first-order CS modified gravity and comment on the similarities and differences.Comment: 8 pages, an author added, new paragraphs, comments and references added, published in Gen. Relativ. Gravi

    Efecto de la carga animal sobre la producción animal, la disponibilidad y la calidad forrajera en Eragrostis curvula

    Get PDF
    En el Campo de Enseñanza de la Facultad de Agronomía de la Universidad Nacional de La Pampa se realizó un ensayo de pastoreo continuo, en pasto llorón, con diferente carga animal. Se usó 0,74, 1,36 Y 2 EV/ha para los tratamientos C, B y A respectivamente. Se midió disponibilidad de materia seca, digestibilidad in vi/ro y proteína bruta del forraje; también se determinó la variación de peso de los animales mediante pesadas mensuales. La producción animal fue de 83,5 , 131 Y202 kg/ha; con eficiencias de stock de 31, 26,4 Y27 % para los tratamientos C, B y A respectivamente. Disponibilidad de materia seca: se encontraron diferencias altamente significativas entre los tratamientos entre fechas y para la interacción tratamiento fecha. Digestibilidad: se encontraron diferencias significativas entre tratamientos y para la interacción tratamiento-fecha; y diferencias altamente significativas entre fechas. Proteína Bruta: se encontraron diferencias significativas entre tratamientos, altamente significativas entre fechas y la interacción tratamiento-fecha no fue significativa. Variación de pesos: no se encontraron diferencias entre los tratamientos; pero si se hallaron diferencias altamente significativas entre las fechas y significativas para la interacción tratamiento-fecha.Director: Ing. Agr. Gustavo Fernández. Cátedra de Zootecnia 1

    E-Voting in an ubicomp world: trust, privacy, and social implications

    Get PDF
    The advances made in technology have unchained the user from the desktop into interactions where access is anywhere, anytime. In addition, the introduction of ubiquitous computing (ubicomp) will see further changes in how we interact with technology and also socially. Ubicomp evokes a near future in which humans will be surrounded by “always-on,” unobtrusive, interconnected intelligent objects where information is exchanged seamlessly. This seamless exchange of information has vast social implications, in particular the protection and management of personal information. This research project investigates the concepts of trust and privacy issues specifically related to the exchange of e-voting information when using a ubicomp type system
    corecore