The most general gravity Lagrangian in four dimensions contains three
topological densities, namely Nieh-Yan, Pontryagin and Euler, in addition to
the Hilbert-Palatini term. We set up a Hamiltonian formulation based on this
Lagrangian. The resulting canonical theory depends on three parameters which
are coefficients of these terms and is shown to admit a real SU(2) gauge
theoretic interpretation with a set of seven first-class constraints. Thus, in
addition to the Newton's constant, the theory of gravity contains three
(topological) coupling constants, which might have non-trivial imports in the
quantum theory.Comment: Based on a talk at Loops-11, Madrid, Spain; To appear in Journal of
Physics: Conference Serie