2,475 research outputs found

    Dark Matter Prediction from Canonical Quantum Gravity with Frame Fixing

    Full text link
    We show how, in canonical quantum cosmology, the frame fixing induces a new energy density contribution having features compatible with the (actual) cold dark matter component of the Universe. First we quantize the closed Friedmann-Robertson-Walker (FRW) model in a sinchronous reference and determine the spectrum of the super-Hamiltonian in the presence of ultra-relativistic matter and a perfect gas contribution. Then we include in this model small inhomogeneous (spherical) perturbations in the spirit of the Lemaitre-Tolman cosmology. The main issue of our analysis consists in outlining that, in the classical limit, the non-zero eigenvalue of the super-Hamiltonian can make account for the present value of the dark matter critical parameter. Furthermore we obtain a direct correlation between the inhomogeneities in our dark matter candidate and those one appearing in the ultra-relativistic matter.Comment: 5 pages, to appear on Modern Physics Letters

    Impact of COVID-19 on maxillofacial surgery practice: a worldwide survey

    Get PDF
    The outbreak of coronavirus disease 2019 (COVID-19) is rapidly changing our habits. To date, April 12, 2020, the virus has reached 209 nations, affecting 1.8 million people and causing more than 110,000 deaths. Maxillofacial surgery represents an example of a specialty that has had to adapt to this outbreak, because of the subspecialties of oncology and traumatology. The aim of this study was to examine the effect of this outbreak on the specialty of maxillofacial surgery and how the current situation is being managed on a worldwide scale. To achieve this goal, the authors developed an anonymous questionnaire which was posted on the internet and also sent to maxillofacial surgeons around the globe using membership lists from various subspecialty associations. The questionnaire asked for information about the COVID-19 situation in the respondent's country and in their workplace, and what changes they were facing in their practices in light of the outbreak. The objective was not only to collect and analyse data, but also to highlight what the specialty is facing and how it is handling the situation, in the hope that this information will be useful as a reference in the future, not only for this specialty, but also for others, should COVID-19 or a similar global threat arise again

    Explicit finite element implementation of a shape memory alloy constitutive model and associated analyses

    Get PDF
    Shape memory alloys (SMA) represent an important class of smart metallic materials employed in various innovative applications thanks to their unique thermomechanical behavior. Since the 1980s, several SMA constitutive models have been proposed and implemented into both commercial and academic finite element analysis software tools. Such models have demonstrated their reliability and robustness in the design and optimization of a wide variety of SMA-based components. However, most models are implemented using implicit integration schemes, thus limiting their applicability in highly nonlinear analyses. The objective of this work is to present a novel explicit integration scheme for the numerical implementation of the three-dimensional Souza-Auricchio model, a phenomenological model able to reproduce the primary SMA responses (i.e., pseudoelasticity and shape memory effect). The model constitutive equations are formulated by adopting the continuum thermodynamic theory with internal variables, following a plasticity-like approach. An elastic predictor-inelastic corrector scheme is here used to solve the time-discrete non-linear constitutive equations in the explicit framework. The proposed algorithm is investigated through several benchmark boundary-value problems of increasing complexity, considering both pseudoelastic and shape memory response in quasi-static conditions; a comparison with an implicit integration scheme is also performed. Such numerical tests demonstrate the ability of the algorithm to reproduce key material behaviors with effectiveness and robustness. Particularly, the analysis of SMA cables demonstrates the effectiveness of the explicit algorithm to solve complex problems involving widespread nonlinear contact, which prevent the convergence of the implicit scheme. Details such as mass-scaling options are also discussed

    Group I metabotropic glutamate receptors activate burst firing in rat midbrain dopaminergic neurons

    Get PDF
    We have investigated the changes in the spontaneous firing pattern induced by DHPG ((S)-3,5-dihydroxyphenylglycine) and NMDA (N-methyl-d-aspartic acid) on rat dopaminergic neurons in substantia nigra pars compacta (SNc) using sharp microelectrode recordings in in vitro conditions. Twenty-five out of 33 cells modified the regular single-pacemaker activity in burst firing when exposed to the Group I metabotropic glutamate receptor (mGluR) agonist DHPG (30 muM) and d-tubocurarine (500 muM) (d-TC), whereas they all fired in bursts during NMDA (20 muM) plus d-TC application. The blockade of SK-channels by d-TC and apamin was essential for the production of both types of bursts. Although the two drugs induced a similar number of action potentials per burst, the DHPG-induced bursts had a lower frequency, a longer duration and a longer plateau period without spikes. In addition, the DHPG-induced bursting had a longer wash-out, could be reduced or blocked by the mGluR I selective, non-competitive antagonist CPCCOEt (7-cyclopropan[b]chromen-1a-carboxylic acid ethyl ester) (100 muM) while it was not affected by the mGluR 5 selective antagonist MPEP (2-methyl-6-(phenylethynyl)-pyridine (10 muM). These results suggest that both the activation of glutamate metabotropic type I and NMDA ionotropic receptors induce burst firing in the dopaminergic cells of the ventral midbrain when the activity of the SK-channels is reduced. (C) 2002 Elsevier Science Ltd. All rights reserved

    Dystonia: sparse synapses for D2 receptors in striatum of a DYT1 knock-out mouse model

    Get PDF
    Dystonia pathophysiology has been partly linked to downregulation and dysfunction of dopamine D2 receptors in striatum. We aimed to investigate the possible morpho-structural correlates of D2 receptor downregulation in the striatum of a DYT1 Tor1a mouse model. Adult control Tor1a+/+ and mutant Tor1a+/− mice were used. The brains were perfused and free-floating sections of basal ganglia were incubated with polyclonal anti-D2 antibody, followed by secondary immune-fluorescent antibody. Confocal microscopy was used to detect immune-fluorescent signals. The same primary antibody was used to evaluate D2 receptor expression by western blot. The D2 receptor immune-fluorescence appeared circumscribed in small disks (~0.3–0.5 μm diameter), likely representing D2 synapse aggregates, densely distributed in the striatum of Tor1a+/+ mice. In the Tor1a+/− mice the D2 aggregates were significantly smaller (μm2 2.4 ± SE 0.16, compared to μm2 6.73 ± SE 3.41 in Tor1a+/+) and sparse, with ~30% less number per microscopic field, value correspondent to the amount of reduced D2 expression in western blotting analysis. In DYT1 mutant mice the sparse and small D2 synapses in the striatum may be insufficient to “gate” the amount of presynaptic dopamine release diffusing in peri-synaptic space, and this consequently may result in a timing and spatially larger nonselective sphere of influence of dopamine action

    Psychiatric profile of motor subtypes of de novo drug-naïve Parkinson's disease patients

    Get PDF
    Background: Parkinson's disease (PD) is a heterogeneous neurodegenerative disorder. It is well established that different motor subtypes of PD evolve with different clinical courses and prognoses. The complete psychiatric profile underlying these different phenotypes since the very early stage of the disease is debated. Aims of the study: We aimed at investigating the psychiatric profile of the three motor subtypes of PD (akinetic-rigid, tremor-dominant, and mixed) in de novo drug-naïve patients with PD. Methods: Sixty-eight patients with PD, divided into 39 akinetic-rigid (AR), seven mixed (MIX), and 22 tremor-dominant (TD) patients underwent a complete assessment of psychiatric, cognitive, and motor symptoms. Results: No significant differences were found among groups. Conclusions: Our results suggest that a differentiation of the psychiatric symptoms associated with specific motor subtypes of PD is not detectable in de novo drug-naïve patients. Previous evidence that emerges later along the disease progression may be a consequence of the dopaminergic and nondopaminergic damage increase

    On the Generalized Einstein-Cartan Action with Fermions

    Full text link
    From the freedom exhibited by the generalized Einstein action proposed in [1], we show that we can construct the standard effective Einstein-Cartan action coupled to the fermionic matter without the usual current-current interaction and therefore an effective action which does not depend neither on the Immirzi parameter nor on the torsion. This establishes the equivalence between the Einstein-Cartan theory and the theory of the general relativity minimally coupled to the fermionic matter.Comment: 8 pages, Added references, Corrected typos, Accepted in Class. Quant. Gra

    Embolisation for Vascular Injuries Complicating Elective Orthopaedic Surgery

    Get PDF
    AbstractObjectivesThe study aims to present the indications and emphasise the role of embolisation for vascular injuries in orthopaedic surgery.MethodsThirty-one patients with vascular injuries complicating elective orthopaedic surgery had embolisation from 2003 to 2010. N-2-butyl cyano-acrylate (NBCA) was used as embolic agent in 28 patients, gelatin sponge in three and coil embolisation in addition to NBCA or gelatin sponge in two patients. The mean follow-up period was 37 months (range, 4–96 months).ResultsThe most common orthopaedic operations associated with vascular injuries amenable to embolisation were hip-joint procedures; and the most common injuries were arterial tears of branch vessels or non-critical axial vessels, most commonly of the superior glutaeal artery. In all cases, angiography showed the bleeding point, and a single embolisation session effectively stopped bleeding. Embolisation-related complications were not observed.ConclusionsEmbolisation should be considered the treatment of choice for vascular injuries of branch vessels or non-critical axial vessels following elective orthopaedic surgery because of the advantages of minimally invasive therapy and the lack of complications

    Generalized Chern-Simons Modified Gravity in First-Order Formalism

    Full text link
    We propose a generalization of Chern-Simons (CS) modified gravity in first-order formalism. CS modified gravity action has a term that comes from the chiral anomaly which is Pontryagin invariant. First-order CS modified gravity is a torsional theory and in a space-time with torsion the chiral anomaly includes a torsional topological term called Nieh-Yan invariant. We generalize the CS modified gravity by adding the Nieh-Yan term to the action and find the effective theory. We compare the generalized theory with the first-order CS modified gravity and comment on the similarities and differences.Comment: 8 pages, an author added, new paragraphs, comments and references added, published in Gen. Relativ. Gravi
    corecore