69 research outputs found

    Diagnostic accuracy of qPCR and microscopy for cutaneous leishmaniasis in rural Ecuador: A Bayesian latent class analysis

    Get PDF
    Precisión diagnóstica; Leishmaniasis cutánea; Ecuador ruralPrecisió diagnòstica; Leishmaniosi cutània; Equador ruralDiagnostic accuracy; Cutaneous leishmaniasis; Rural EcuadorBackground Clinical and laboratory diagnosis of cutaneous leishmaniasis (CL) is hampered by under-ascertainment of direct microscopy. Methods This study compared the diagnostic accuracy of qPCR on DNA extracted from filter paper to the accuracy of direct smear slide microscopy in participants presenting with a cutaneous lesion suspected of leishmaniasis to 16 rural healthcare centers in the Ecuadorian Amazon and Pacific regions, from January 2019 to June 2021. We used Bayesian latent class analysis to estimate test sensitivity, specificity, likelihood ratios (LR), and predictive values (PV) with their 95% credible intervals (95%CrI). The impact of sociodemographic and clinical characteristics on predictive values was assessed as a secondary objective. Results Of 320 initially included participants, paired valid test results were available and included in the diagnostic accuracy analysis for 129 from the Amazon and 185 from the Pacific region. We estimated sensitivity of 68% (95%CrI 49% to 82%) and 73% (95%CrI 73% to 83%) for qPCR, and 51% (95%CrI 36% to 66%) and 76% (95%CrI 65% to 86%) for microscopy in the Amazon and Pacific region, respectively. In the Amazon, with an estimated disease prevalence among participants of 73%, negative PV for qPCR was 54% (95%CrI 5% to 77%) and 44% (95%CrI 4% to 65%) for microscopy. In the Pacific, (prevalence 88%) the negative PV was 34% (95%CrI 3% to 58%) and 37% (95%CrI 3% to 63%). The addition of qPCR parallel to microscopy in the Amazon increases the observed prevalence from 38% to 64% (+26 (95%CrI 19 to 34) percentage points). Conclusion The accuracy of either qPCR on DNA extracted from filter paper or microscopy for CL diagnosis as a stand-alone test seems to be unsatisfactory and region-dependent. We recommend further studies to confirm the clinically relevant increment found in the diagnostic yield due to the addition of qPCR

    In-situ estimation of ice crystal properties at the South Pole using LED calibration data from the IceCube Neutrino Observatory

    Get PDF
    The IceCube Neutrino Observatory instruments about 1 km3 of deep, glacial ice at the geographic South Pole using 5160 photomultipliers to detect Cherenkov light emitted by charged relativistic particles. A unexpected light propagation effect observed by the experiment is an anisotropic attenuation, which is aligned with the local flow direction of the ice. Birefringent light propagation has been examined as a possible explanation for this effect. The predictions of a first-principles birefringence model developed for this purpose, in particular curved light trajectories resulting from asymmetric diffusion, provide a qualitatively good match to the main features of the data. This in turn allows us to deduce ice crystal properties. Since the wavelength of the detected light is short compared to the crystal size, these crystal properties do not only include the crystal orientation fabric, but also the average crystal size and shape, as a function of depth. By adding small empirical corrections to this first-principles model, a quantitatively accurate description of the optical properties of the IceCube glacial ice is obtained. In this paper, we present the experimental signature of ice optical anisotropy observed in IceCube LED calibration data, the theory and parametrization of the birefringence effect, the fitting procedures of these parameterizations to experimental data as well as the inferred crystal properties.</p

    TXS 0506+056 with Updated IceCube Data

    Get PDF
    Past results from the IceCube Collaboration have suggested that the blazar TXS 0506+056 is a potential source of astrophysical neutrinos. However, in the years since there have been numerous updates to event processing and reconstruction, as well as improvements to the statistical methods used to search for astrophysical neutrino sources. These improvements in combination with additional years of data have resulted in the identification of NGC 1068 as a second neutrino source candidate. This talk will re-examine time-dependent neutrino emission from TXS 0506+056 using the most recent northern-sky data sample that was used in the analysis of NGC 1068. The results of using this updated data sample to obtain a significance and flux fit for the 2014 TXS 0506+056 "untriggered" neutrino flare are reported

    Conditional normalizing flows for IceCube event reconstruction

    Get PDF

    Galactic Core-Collapse Supernovae at IceCube: “Fire Drill” Data Challenges and follow-up

    Get PDF
    The next Galactic core-collapse supernova (CCSN) presents a once-in-a-lifetime opportunity to make astrophysical measurements using neutrinos, gravitational waves, and electromagnetic radiation. CCSNe local to the Milky Way are extremely rare, so it is paramount that detectors are prepared to observe the signal when it arrives. The IceCube Neutrino Observatory, a gigaton water Cherenkov detector below the South Pole, is sensitive to the burst of neutrinos released by a Galactic CCSN at a level >10σ. This burst of neutrinos precedes optical emission by hours to days, enabling neutrinos to serve as an early warning for follow-up observation. IceCube\u27s detection capabilities make it a cornerstone of the global network of neutrino detectors monitoring for Galactic CCSNe, the SuperNova Early Warning System (SNEWS 2.0). In this contribution, we describe IceCube\u27s sensitivity to Galactic CCSNe and strategies for operational readiness, including "fire drill" data challenges. We also discuss coordination with SNEWS 2.0

    All-Energy Search for Solar Atmospheric Neutrinos with IceCube

    Get PDF
    The interaction of cosmic rays with the solar atmosphere generates a secondary flux of mesons that decay into photons and neutrinos – the so-called solar atmospheric flux. Although the gamma-ray component of this flux has been observed in Fermi-LAT and HAWC Observatory data, the neutrino component remains undetected. The energy distribution of those neutrinos follows a soft spectrum that extends from the GeV to the multi-TeV range, making large Cherenkov neutrino telescopes a suitable for probing this flux. In this contribution, we will discuss current progress of a search for the solar neutrino flux by the IceCube Neutrino Observatory using all available data since 2011. Compared to the previous analysis which considered only high-energy muon neutrino tracks, we will additionally consider events produced by all flavors of neutrinos down to GeV-scale energies. These new events should improve our analysis sensitivity since the flux falls quickly with energy. Determining the magnitude of the neutrino flux is essential, since it is an irreducible background to indirect solar dark matter searches

    Searches for IceCube Neutrinos Coincident with Gravitational Wave Events

    Get PDF

    Recent neutrino oscillation results with the IceCube experiment

    Get PDF
    The IceCube South Pole Neutrino Observatory is a Cherenkov detector instrumented in a cubic kilometer of ice at the South Pole. IceCube’s primary scientific goal is the detection of TeV neutrino emissions from astrophysical sources. At the lower center of the IceCube array, there is a subdetector called DeepCore, which has a denser configuration that makes it possible to lower the energy threshold of IceCube and observe GeV-scale neutrinos, opening the window to atmospheric neutrino oscillations studies. Advances in physics sensitivity have recently been achieved by employing Convolutional Neural Networks to reconstruct neutrino interactions in the DeepCore detector. In this contribution, the recent IceCube result from the atmospheric muon neutrino disappearance analysis using the CNN-reconstructed neutrino sample are presented and compared to the existing worldwide measurements
    corecore