535 research outputs found

    Observation of a phononic Mollow triplet in a hybrid spin-nanomechanical system

    Full text link
    Reminiscent of the bound character of a qubit's dynamics confined on the Bloch sphere, the observation of a Mollow triplet in the resonantly driven qubit fluorescence spectrum represents one of the founding signatures of Quantum Electrodynamics. Here we report on its observation in a hybrid spin-nanomechanical system, where a Nitro-gen Vacancy spin qubit is magnetically coupled to the vibrations of a Silicon Carbide nanowire. A resonant microwave field turns the originally parametric hybrid interac-tion into a resonant process, where acoustic phonons are now able to induce transitions between the dressed qubit states, leading to synchronized spin-oscillator dynamics. We further explore the vectorial character of the hybrid coupling to the bidimensional de-formations of the nanowire. The demonstrated microwave assisted synchronization of the spin-oscillator dynamics opens novel perspectives for the exploration of spin-dependent forces, the key-ingredient for quantum state transfer

    Nano-optomechanical measurement in the photon counting regime

    Full text link
    Optically measuring in the photon counting regime is a recurrent challenge in modern physics and a guarantee to develop weakly invasive probes. Here we investigate this idea on a hybrid nano-optomechanical system composed of a nanowire hybridized to a single Nitrogen-Vacancy (NV) defect. The vibrations of the nanoresonator grant a spatial degree of freedom to the quantum emitter and the photon emission event can now vary in space and time. We investigate how the nanomotion is encoded on the detected photon statistics and explore their spatio-temporal correlation properties. This allows a quantitative measurement of the vibrations of the nanomechanical oscillator at unprecedentedly low light intensities in the photon counting regime when less than one photon is detected per oscillation period, where standard detectors are dark-noise-limited. These results have implications for probing weakly interacting nanoresonators, for low temperature experiments and for investigating single moving markers

    Deviation from the normal mode expansion in a coupled graphene-nanomechanical system

    Full text link
    We optomechanically measure the vibrations of a nanomechanical system made of a graphene membrane suspended on a silicon nitride nanoresonator. When probing the thermal noise of the coupled nanomechanical device, we observe a significant deviation from the normal mode expansion. It originates from the heterogeneous character of mechanical dissipation over the spatial extension of coupled eigenmodes, which violates one of the fundamental prerequisite for employing this commonly used description of the nanoresonators' thermal noise. We subsequently measure the local mechanical susceptibility and demonstrate that the fluctuation-dissipation theorem still holds and permits a proper evaluation of the thermal noise of the nanomechanical system. Since it naturally becomes delicate to ensure a good spatial homogeneity at the nanoscale, this approach is fundamental to correctly describe the thermal noise of nanomechanical systems which ultimately impact their sensing capacity

    PCN59 COST OF MANAGEMENT OF BREAST CANCER WITH BRAIN METASTASES USING FRENCH HOSPITAL PATIENT CHAINING SYSTEM

    Get PDF

    Cavity nano-optomechanics in the ultrastrong coupling regime with ultrasensitive force sensors

    Get PDF
    In a canonical optomechanical system, mechanical vibrations are dynamically encoded on an optical probe field which reciprocally exerts a backaction force. Due to the weak single photon coupling strength achieved with macroscopic oscillators, most of existing experiments were conducted with large photon numbers to achieve sizeable effects, thereby causing a dilution of the original optomechanical non-linearity. Here, we investigate the optomechanical interaction of an ultrasensi-tive suspended nanowire inserted in a fiber-based microcavity mode. This implementation allows to enter far into the hitherto unexplored ultrastrong optomechanical coupling regime, where one single intracavity photon can displace the oscillator by more than its zero point fluctuations. To fully characterize our system, we implement nanowire-based scanning probe measurements to map the vectorial optomechanical coupling strength, but also to reveal the intracavity optomechanical force field experienced by the nanowire. This work establishes that the single photon cavity optomechanics regime is within experimental reach. Introduction-The field of optomechanics has gone through many impressive developments over the last decades [1]. The coupling between a probe light field and a mechanical degree of freedom, an oscillator, possibly assisted by a high finesse cavity was early proposed as an ideal platform to explore the quantum limits of ultrasen-sitive measurements, where the quantum fluctuations of the light are the dominant source of measurement noise [2-5]. The measurement backaction was also employed to manipulate the oscillator state through optical forces and dynamical backaction, leading to optomechanical correlations between both components of the system. In this framework, ground state cooling, mechanical detection of radiation pressure quantum noise, advanced correlation between light and mechanical states or optomechanical squeezing were reported [6-19]. All those impressive results were obtained in the linear regime of cavity optomechanics, making use of large photon numbers, where the interaction Hamiltonian is linearized around an operating setpoint. However, the optomechanical interaction possesses an intrinsic non-linearity at the single excitation level, which has for the moment remained far from experimental reach due to the weak single photon coupling strength achieved with macroscopic oscillators. This regime is achieved when a single photon in the cavity shifts the static rest position of the mechanical resonator by a quantity δx (1) which is larger than its zero point fluctuations δx zpf. A very strong optomechanical interaction is indeed needed to fulfil this condition since it requires g 0 /Ω m > 1 where g 0 is the single photon optomechanical coupling and Ω m the resonant pulsation of the mechanical oscillator. Operating in the ultra-strong coupling regime is thus an experimenta

    Ultrasensitive nano-optomechanical force sensor at dilution temperatures

    Full text link
    Cooling down nanomechanical force probes is a generic strategy to enhance their sensitivities through the concomitant reduction of their thermal noise and mechanical damping rates. However, heat conduction mechanisms become less efficient at low temperatures, which renders difficult to ensure and verify their proper thermalization. To operate with minimally perturbing measurements, we implement optomechanical readout techniques operating in the photon counting regime to probe the dynamics of suspended silicon carbide nanowires in a dilution refrigerator. Readout of their vibrations is realized with sub-picowatt optical powers, in a regime where less than one photon is collected per oscillation period. We demonstrate their thermalization down to 32±232\pm2 mK and report on record sensitivities for scanning probe force sensors, at the 40 zN/Hz1/240\,\rm zN/Hz^{1/2} level, with a sensitivity to lateral force field gradients in the fN/m range. This work opens the road toward nanomechanical vectorial imaging of faint forces at dilution temperatures, at minimal excitation levels

    Nonlinear dynamics of waves and modulated waves in 1D thermocapillary flows. I: General presentation and periodic solutions

    Full text link
    We present experimental results on hydrothermal traveling-waves dynamics in long and narrow 1D channels. The onset of primary traveling-wave patterns is briefly presented for different fluid heights and for annular or bounded channels, i.e., within periodic or non-periodic boundary conditions. For periodic boundary conditions, by increasing the control parameter or changing the discrete mean-wavenumber of the waves, we produce modulated waves patterns. These patterns range from stable periodic phase-solutions, due to supercritical Eckhaus instability, to spatio-temporal defect-chaos involving traveling holes and/or counter-propagating-waves competition, i.e., traveling sources and sinks. The transition from non-linearly saturated Eckhaus modulations to transient pattern-breaks by traveling holes and spatio-temporal defects is documented. Our observations are presented in the framework of coupled complex Ginzburg-Landau equations with additional fourth and fifth order terms which account for the reflection symmetry breaking at high wave-amplitude far from onset. The second part of this paper (nlin.PS/0208030) extends this study to spatially non-periodic patterns observed in both annular and bounded channel.Comment: 45 pages, 21 figures (elsart.cls + AMS extensions). Accepted in Physica D. See also companion paper "Nonlinear dynamics of waves and modulated waves in 1D thermocapillary flows. II: Convective/absolute transitions" (nlin.PS/0208030). A version with high resolution figures is available on N.G. web pag
    • …
    corecore