2 research outputs found

    Rocky shore biotic assemblages of the Maltese Islands (Central Mediterranean) : a conservation perspective

    Get PDF
    Limestone rocky shores constitute ca 90.5% of the 272km coastline of the Maltese islands. Only some 40% of this rocky coastline is gently sloping and easily accessible. Such shores are heavily impacted with 96% of the accessible coastline dominated by tourist-related or by maritime activities. We characterized the biotic assemblages of lowland Maltese rocky shores and tested the popularly held view that given the scarce variation in physical characteristics, such shores form a homogenous habitat. Belt transects were laid perpendicular to the shoreline from biological zero to the adlittoral zone on seven Coralline Limestone and one Globigerina Limestone shores. Cover (for algae and encrusting species) or population density (for animals except sponges) were estimated using 0.5m X 0.05m quadrats placed contiguously for the first few metres and then at regularly spaced intervals. Overall, 19 faunal and 47 floral species, and 10 faunal and 8 floral species were recorded from the Coralline and Globigerina transects respectively, with 60.8% faunal and 25.6% floral species common to the two substrata. Hierarchical clustering showed that the Coralline and Globigerina transects harboured distinct biotic assemblages and identified an upper shore assemblage dominated by the littorinid Melarhaphe neritoides and barnacles, and a lower shore assemblage dominated by algae and molluscs; a mid-shore transition zone where certain species from both assemblages reached peaks of abundance was present in almost all Coralline and the majority of Globigerina transects. Differences in biota between the two types of shore are most likely primarily related to differences in microtopography and, to a lesser degree, to exposure. It is concluded that in spite of gross physical similarity, Maltese lowland rocky shores are biotically inhomogeneous, making conservation of individual sites much more important than previously thought.peer-reviewe
    corecore