51 research outputs found

    Magnetic-Field-Induced Topological Reorganization of a P-wave Superconductor

    Full text link
    In this work we illustrate the detrimental impact of the Cooper pair's spin-structure on the thermodynamic and topological properties of a spin-triplet superconductor in an applied Zeeman field. We particularly focus on the paradigmatic one-dimensional case (Kitaev chain) for which we self-consistently retrieve the energetically preferred Cooper pair spin-state in terms of the corresponding spin d-vector. The latter undergoes a substantial angular and amplitude reorganization upon the variation of the strength and the orientation of the field and results to a modification of the bulk topological phase diagram. Markedly, when addressing the open chain we find that the orientation of the d-vector varies spatially near the boundary, affecting in this manner the appearance of Majorana fermions at the edge or even altering the properties of the bulk region. Our analysis reveals the limitations and breakdown of the bulk-boundary correspondence in interacting topological systems.Comment: 5 pages, 3 panels of figures; Minor corrections in the new version, which will appear in Phys. Rev. B as a Rapid Communicatio

    High orbital-moment Cooper pairs by crystalline symmetry breaking

    Full text link
    The pairing structure of superconducting materials is regulated by the point group symmetries of the crystal. Here, we study spin-singlet multiorbital superconductivity in materials with unusually low crystalline symmetry content and unveil the the appearance of even-parity (s-wave) Cooper pairs with high orbital moment. We show that the lack of mirror and rotation symmetries makes pairing states with quintet orbital angular momentum symmetry-allowed. A remarkable fingerprint of this type of pairing state is provided by a nontrivial superconducting phase texture in momentum space with π\pi-shifted domains and walls with anomalous phase winding. The pattern of the quintet pairing texture is shown to depend on the orientation of the orbital polarization and the strength of the mirror and/or rotation symmetry breaking terms. Such momentum dependent phase makes Cooper pairs with net orbital component suited to design orbitronic Josephson effects. We discuss how an intrinsic orbital dependent phase can set out anomalous Josephson couplings by employing superconducting leads with nonequivalent breaking of crystalline symmetry.Comment: 11 pages, 9 figure

    Spectroscopic Signatures of Gate-Controlled Superconducting Phases

    Full text link
    We investigate the tunneling conductance of superconductor-insulator-normal metal (SIN) and superconductor-insulator-superconductor (SIS) heterostructures with one superconducting side of the junction that is electrically driven and can exhibit π\pi-pairing through a modification of the surface inversion asymmetric couplings. In SIN tunneling we find that the variation of the electrically driven interactions generally brings an increase of quasi-particles in the gap due to orbitally polarized depaired states, irrespective of the inter-band phase rearrangement. The peak of SIN conductance at the gap edge varies with a trend that depends both on the strength of the surface interactions as well as on the character of the gate-induced superconducting state. While this shift can be also associated with thermal effects in the SIN configuration, for the SIS geometry at low temperature the electric field does not yield the characteristic matching peak at voltages related with the difference between the gaps of the superconducting electrodes. This observation sets out a distinctive mark for spectroscopically distinguishing the thermal population effects from the quantum gate-driven signatures. In SIS the electrostatic gating yields a variety of features with asymmetric peaks and broadening of the conductance spectral weight. These findings indicate general qualitative trends for both SIN and SIS tunneling spectroscopy which could serve to evaluate the impact of gate-control on superconductors and the occurrence of non-centrosymmetric orbital antiphase pairing.Comment: 15 pages, 8 panels of figure

    Synthetic Weyl Points and Chiral Anomaly in Majorana Devices with Nonstandard Andreev-Bound-State Spectra

    Get PDF
    We demonstrate how to design various nonstandard types of Andreev-bound-state (ABS) dispersions, via a composite construction relying on Majorana bound states (MBSs). Here, the MBSs appear at the interface of a Josephson junction consisting of two topological superconductors (TSCs). Each TSC harbors multiple MBSs per edge by virtue of a chiral or unitary symmetry. We find that, while the ABS dispersions are 2Ï€2\pi-periodic, they still contain multiple crossings which are protected by the conservation of fermion parity. A single junction with four interface MBSs and all MBS couplings fully controllable, or, networks of such coupled junctions with partial coupling tunability, open the door for topological bandstructures with Weyl points or nodes in synthetic dimensions, which in turn allow for fermion-parity (FP) pumping with a cycle set by the ABS-dispersion details. In fact, in the case of nodes, the FP pumping is a manifestation of chiral anomaly in 2D synthetic spacetime. The possible experimental demonstration of ABS engineering in these devices, further promises to unveil new paths for the detection of MBSs and higher-dimensional chiral anomaly.Comment: Manuscript (8 pages, 3 panels of figures) + Supplemental Material (13 pages, 2 panels of figures); Version to appear in Physical Review Letter

    Electrically Tunable Superconductivity Through Surface Orbital Polarization

    Full text link
    We investigate the physical mechanisms for achieving an electrical control of conventional spin-singlet superconductivity in thin films by focusing on the role of surface orbital polarization. Assuming a multi-orbital description of the metallic state, due to screening effects the electric field acts by modifying the strength of the surface potential and, in turn, yields non-trivial orbital-Rashba couplings. The resulting orbital polarization at the surface and in its close proximity is shown to have a dramatic impact on superconductivity. We demonstrate that, by varying the strength of the electric field, the superconducting phase can be either suppressed, i.e. turned into normal metal, or undergo a 0−π0-\pi transition with the π\pi phase being marked by non-trivial sign change of the superconducting order parameter between different bands. These findings unveil a rich scenario to design heterostructures with superconducting orbitronics effects.Comment: version ad published; 14 pages, 15 panels of figure

    Zero magnetic-field orbital vortices in s-wave spin-singlet superconductors

    Full text link
    Breaking of time-reversal and point-group spatial symmetries can have a profound impact on superconductivity. One of the most extraordinary effects, due to the application of a magnetic field, is represented by the Abrikosov vortices with charged supercurrents circulating around their cores. Whether a similar phenomenon can be obtained by exploiting spatial symmetry breaking, e.g. through electric fields or mechanical strain, is a fundamentally relevant but not yet fully settled problem. Here, we show that in two-dimensional spin-singlet superconductors with unusually low degree of spatial symmetry content, vortices with supercurrents carrying angular momentum around the core can form and be energetically stable. The vortex has zero net magnetic flux since it is made up of counter-propagating Cooper pairs with opposite orbital moments. By solving self-consistently the Bogoliubov - de Gennes equations in real space, we demonstrate that the orbital vortex is stable and we unveil the spatial distribution of the superconducting order parameter around its core. The resulting amplitude has a characteristic pattern with a pronounced angular anisotropy that deviates from the profile of conventional magnetic vortices. These hallmarks guide predictions and proposals for the experimental detection.Comment: (main: 6 pages, 3 panels of figures; supplemental material: 5 pages 5 panels of figures

    Colossal orbital-Edelstein effect in non-centrosymmetric superconductors

    Full text link
    In superconductors that lack inversion symmetry, the flow of supercurrent can induce a non-vanishing magnetization, a phenomenon which is at the heart of non-dissipative magneto-electric effects, also known as Edelstein effects. For electrons carrying spin and orbital moments a question of fundamental relevance deals with the orbital nature of magneto-electric effects in conventional spin-singlet superconductors with Rashba coupling. Remarkably, we find that the supercurrent-induced orbital magnetization is more than one order of magnitude greater than that due to the spin, giving rise to a colossal magneto-electric effect. The induced orbital magnetization is shown to be sign tunable, with the sign change occurring for the Fermi level lying in proximity of avoiding crossing points in the Brillouin zone and in the presence of superconducting phase inhomogeneities, yielding domains with opposite orbital moment orientation. The orbital-dominated magneto-electric phenomena, hence, have clear-cut marks for detection both in the bulk and at the edge of the system and are expected to be a general feature of multi-orbital superconductors without inversion symmetry breaking.Comment: 7 pages, 5 figure

    Sign reversal diode effect in superconducting Dayem nanobridges

    Full text link
    Supercurrent diodes are nonreciprocal electronic elements whose switching current depends on their flow direction. Recently, a variety of composite systems combining different materials and engineered asymmetric superconducting devices have been proposed. Yet, ease of fabrication and tunable sign of supercurrent rectification joined to large efficiency have not been assessed in a single platform so far. Here, we demonstrate that all-metallic superconducting Dayem nanobridges naturally exhibit nonreciprocal supercurrents in the presence of an external magnetic field, with a rectification efficiency up to ∼27%\sim 27\%. Our niobium nanostructures are tailored so that the diode polarity can be tuned by varying the amplitude of an out-of-plane magnetic field or the temperature in a regime without magnetic screening. We show that sign reversal of the diode effect may arise from the high-harmonic content of the current phase relation of the nanoconstriction in combination with vortex phase windings present in the bridge or an anomalous phase shift compatible with anisotropic spin-orbit interactions

    Back-action supercurrent diodes

    Full text link
    Back-action refers to a response that retro-acts on a system to tailor its properties with respect to an external stimulus. This self-induced effect generally belongs to both the natural and technological realm, ranging from neural networks to optics and electronic circuitry. In electronics, back-action mechanisms are at the heart of many classes of devices such as amplifiers, oscillators, and sensors. Here, we demonstrate that back-action can be successfully exploited to achieve non-reciprocal\textit{non-reciprocal} transport in superconducting circuits. Our device realizes a supercurrent diode, since the dissipationless current flows in one direction whereas dissipative transport occurs in the opposite direction. Supercurrent diodes presented so far rely on magnetic elements or vortices to mediate charge transport or external magnetic fields to break time-reversal symmetry. In our implementation, back-action solely turns a conventional reciprocal superconducting weak link with no asymmetry between the current bias directions into a diode, where the critical current amplitude depends on the bias sign. The self-interaction of the supercurrent with the device stems from the gate tunability of the critical current, which uniquely promotes up to ∼\sim88% of magnetic field-free signal rectification and diode functionality with selectable polarity. The concept we introduce is very general and can be applied directly to a large variety of devices, thereby opening novel functionalities in superconducting electronics

    Local field theory for disordered itinerant quantum ferromagnets

    Full text link
    An effective field theory is derived that describes the quantum critical behavior of itinerant ferromagnets in the presence of quenched disorder. In contrast to previous approaches, all soft modes are kept explicitly. The resulting effective theory is local and allows for an explicit perturbative treatment. It is shown that previous suggestions for the critical fixed point and the critical behavior are recovered under certain assumptions. The validity of these assumptions is discussed in the light of the existence of two different time scales. It is shown that, in contrast to previous suggestions, the correct fixed point action is not Gaussian, and that the previously proposed critical behavior was correct only up to logarithmic corrections. The connection with other theories of disordered interacting electrons, and in particular with the resolution of the runaway flow problem encountered in these theories, is also discussed.Comment: 17pp., REVTeX, 5 eps figs, final version as publishe
    • …
    corecore