22 research outputs found

    Characterization of Free and Porous Silicon-Encapsulated Superparamagnetic Iron Oxide Nanoparticles as Platforms for the Development of Theranostic Vaccines

    No full text
    Tracking vaccine components from the site of injection to their destination in lymphatic tissue, and simultaneously monitoring immune effects, sheds light on the influence of vaccine components on particle and immune cell trafficking and therapeutic efficacy. In this study, we create a hybrid particle vaccine platform comprised of porous silicon (pSi) and superparamagnetic iron oxide nanoparticles (SPIONs). The impact of nanoparticle size and mode of presentation on magnetic resonance contrast enhancement are examined. SPION-enhanced relaxivity increased as the core diameter of the nanoparticle increased, while encapsulation of SPIONs within a pSi matrix had only minor effects on T2 and no significant effect on T2* relaxation. Following intravenous injection of single and hybrid particles, there was an increase in negative contrast in the spleen, with changes in contrast being slightly greater for free compared to silicon encapsulated SPIONs. Incubation of bone marrow-derived dendritic cells (BMDC) with pSi microparticles loaded with SPIONs, SIINFEKL peptide, and lipopolysaccharide stimulated immune cell interactions and interferon gamma production in OT-1 TCR transgenic CD8+ T cells. Overall, the hybrid particle platform enabled presentation of a complex payload that was traceable, stimulated functional T cell and BMDC interactions, and resolved in cellular activation of T cells in response to a specific antigen

    Activation of the Inflammasome and Enhanced Migration of Microparticle-Stimulated Dendritic Cells to the Draining Lymph Node

    No full text
    Porous silicon microparticles presenting pathogen-associated molecular patterns mimic pathogens, enhancing internalization of the microparticles and activation of antigen presenting dendritic cells. We demonstrate abundant uptake of microparticles bound by the TLR-4 ligands LPS and MPL by murine bone marrow-derived dendritic cells (BMDC). Labeled microparticles induce concentration-dependent production of IL-1β, with inhibition by the caspase inhibitor Z-VAD-FMK supporting activation of the NLRP3-dependent inflammasome. Inoculation of BALB/c mice with ligand-bound microparticles induces a significant increase in circulating levels of IL-1β, TNF-α, and IL-6. Stimulation of BMDC with ligand-bound microparticles increases surface expression of costimulatory and MHC molecules, and enhances migration of BMDC to the draining lymph node. LPS-microparticles stimulate in vivo C57BL/6 BMDC and OT-1 transgenic T cell interactions in the presence of OVA SIINFEKL peptide in lymph nodes, with intact nodes imaged using two-photon microscopy. Formation of in vivo and in vitro immunological synapses between BMDC, loaded with OVA peptide and LPS-microparticles, and OT-1 T cells are presented, as well as elevated intracellular interferon gamma levels in CD8<sup>+</sup> T cells stimulated by BMDC carrying peptide-loaded microparticles. In short, ligand-bound microparticles enhance (1) phagocytosis of microparticles; (2) BMDC inflammasome activation and upregulation of costimulatory and MHC molecules; (3) cellular migration of BMDC to lymphatic tissue; and (4) cellular interactions leading to T cell activation in the presence of antigen

    Multivalent Presentation of MPL by Porous Silicon Microparticles Favors T Helper 1 Polarization Enhancing the Anti-Tumor Efficacy of Doxorubicin Nanoliposomes

    No full text
    <div><p>Porous silicon (pSi) microparticles, in diverse sizes and shapes, can be functionalized to present pathogen-associated molecular patterns that activate dendritic cells. Intraperitoneal injection of MPL-adsorbed pSi microparticles, in contrast to free MPL, resulted in the induction of local inflammation, reflected in the recruitment of neutrophils, eosinophils and proinflammatory monocytes, and the depletion of resident macrophages and mast cells at the injection site. Injection of microparticle-bound MPL resulted in enhanced secretion of the T helper 1 associated cytokines IFN-γ and TNF-α by peritoneal exudate and lymph node cells in response to secondary stimuli while decreasing the anti-inflammatory cytokine IL-10. MPL-pSi microparticles independently exhibited anti-tumor effects and enhanced tumor suppression by low dose doxorubicin nanoliposomes. Intravascular injection of the MPL-bound microparticles increased serum IL-1β levels, which was blocked by the IL-1 receptor antagonist Anakinra. The microparticles also potentiated tumor infiltration by dendritic cells, cytotoxic T lymphocytes, and F4/80<sup>+</sup> macrophages, however, a specific reduction was observed in CD204<sup>+</sup> macrophages.</p></div

    pSi microparticle association with BMDC and biocompatibility.

    No full text
    <p>a) Scanning electron micrographs show pSi microparticles of varying dimensions (bars 500 nm). b) SEM images show cellular association of 2500×400 nm pSi microparticles with BMDC at various stages of uptake (top row) and cellular association with rod-shaped (left, bottom row) and smaller discoidal particles [600 nm (middle) and 1000 nm (right)]. c) BMDCs, treated with five D25.4 microparticles/cell for three hr, were imaged using confocal microscopy. d) TEM images show BMDC with internalized TLR4-ligand (LPS) bound pSi microparticles four hr after microparticle introduction. Seven 1000×400 nm discoidal microparticles are seen in the cell in the upper image (boxed regions; bar 2 µm) and in the magnified regions below (bars 1 and 0.5 µm). e) TEM images show control (left) and alum-treated BMDC four hr after introduction of 2 µg/ml alum. The boxed region showing internalized alum is magnified in the image to the right. f) BMDCs were incubated with LPS (10 ng/ml), alum (25, 12.5 and 6.25 µg/ml), or pSi microparticles (20 particles/cell) for 24 hr. Cellular necrosis was evaluated using the LIVE/DEAD® Aqua dead cell stain.</p

    Combined chemo and MPL-pSi therapy inhibits cellular proliferation and stimulates tumor infiltration by immune cells which is partly IL-1 dependent.

    No full text
    <p>a) Excised tumors from mice treated with low dose DOX-NPs with or without pSi-MPL microparticles were stained with antibodies specific for Ki67 (red), CD8 (red), F4/80 (green), CD204 (red), or 33D1 (red). Nuclei were stained with Prolong Gold Antifade Reagent with DAPI (blue). b) The percentage of the population comprised of each cell type is shown graphically as the mean of 3–4 regions in randomly selected tissues representing at least two animals per group. *p<0.05; **p<0.01. c) Plasma IL-1β level six hr after intravenous injection of free MPL or 5×10<sup>8</sup> control or MPL-pSi microparticles (10 µg MPL equivalents; n = 3/group; ***p<0.001; *p<0.05). d) Effect of anakinra on MPL-pSi microparticle-induced changes in plasma IL-1β six hr after injection (30 mg, 3×/week; *p<0.05; n = 3/group). e) Tumor growth of mice injected with MPL-pSi microparticles (weekly as indicated by arrows) with and without anakinra (30 mg, 3×/week; n = 3/group). Control verses MPL-pSi, *p<0.05; **p<0.01; ***p<0.001.</p

    Injection of pSi microparticles with the TLR4 agonist MPL induces a synergistic recruitment of inflammatory cells.

    No full text
    <p>Female wild-type C57BL/6 mice were injected with PBS, MPL (50 µg/mouse), pSi microparticles (5×10<sup>8</sup>) or MPL plus pSi microparticles. The mice were sacrificed 24 hr later and PECs were isolated. PECs were stained with various markers to identify cell populations in the peritoneum at this time point, specifically the number of neutrophils (a; CD11b<sup>+</sup> SiglecF<sup>−</sup> Gr-1<sup>+</sup>), M1-like macrophages (b; CD11b<sup>+</sup> SiglecF<sup>−</sup> F4/80<sup>+</sup> ), M2-like macrophages (c; CD11b<sup>high</sup> F4/80<sup>high</sup>), eosinophils (d; Gr-1<sup>−</sup> ckit<sup>−</sup> SiglecF<sup>−</sup>) and mast cells (e; ckit<sup>+</sup> SiglecF<sup>−</sup>). Indicated variable versus MPL+pSi, *p<0.05, ***p<0.001, n = 3/group.</p

    pSi microparticles are immunomodulatory both <i>in vitro</i> and <i>in vivo</i>.

    No full text
    <p>a) Fluorescent microparticle uptake by human monocytes (THP-1 cells) was measured by flow cytometry at select time points after adding microparticles to the cell culture media (top) or after settling of the microparticles on the cell surface by incubation of cells and microparticles on ice for 60 min (bottom) prior to adding warm media (37°C) and transferring to an incubator (n = 3/group). B-D) Wildtype (WT) (b, c) or NLRP3<sup>−/−</sup> (d) BMDCs were primed with 1 ng/ml (b) or 10 ng/ml (c, d) LPS, followed one hr later with 40 particles/cell using pSi microparticles of varying geometries. After 24 hours, supernatants were collected and IL-1β concentrations were determined by ELISA (***p<0.001). E-G) Female C57BL/6 mice were injected i.p. with PBS, Alum or D10.2, D10.4, D25.4 and RS18.4.4 pSi microparticles (0.3 mg/mouse) and the mice were sacrificed after 24 hr. PECs were isolated and stained with various markers to identify cell populations in the peritoneum, specifically the number of neutrophils (e; CD11b<sup>+</sup> Gr1<sup>high</sup> F4/80<sup>−</sup>), eosinophils (f; Gr1<sup>−</sup> ckit<sup>−</sup> SiglecF<sup>+</sup>) and resident macrophages (g; CD11b<sup>high</sup> F4/80<sup>high</sup>). **p<0.01 compared to PBS group, n = 3/group.</p

    Injection of pSi microparticles with the TLR4 agonist MPL induces a synergistic production of proinflammatory cytokines.

    No full text
    <p>PECs were restimulated with CpG (5 µg/ml) or HK E. coli (10 E. coli : 1 PEC)(F). After 24 hr, supernatants were collected and analyzed for the cytokines IFN-γ, TNF-α, IL-12p40 and IL-10 by ELISA. MPL versus MPL-pSi, **p<0.01, ***p<0.001; pSi versus MPL-pSi, •p<0.05, •••p<0.001, n = 3/group.</p

    Combination therapy is superior to single agent therapy in a mouse model of breast cancer.

    No full text
    <p>a) 4T1 tumor growth in BALB/c mice was monitored using calipers. Mice were treated intravenously with MPL-pSi microparticles (5×10<sup>8</sup>) with and without high dose DOX-NPs weekly as indicated by arrows. Control verses MPL-pSi, *p<0.05, n = 3–5/group. b) Final mass of excised tumor. c) Images showing the relative size of extracted tumors and spleens. d) Mice were imaged weekly using the IVIS imaging system five min following injection with luciferin. e) Caliper-derived tumor volume measurements over time for BALB/c mice treated intravenously with low dose DOX-NPs in the presence or absence of MPL-pSi microparticles (5×10<sup>8</sup>) (time of microparticle injections indicated by arrows; DOX-NPs verses DOX-NPs plus MPL-pSi, *p<0.05, n = 3–4/group). f) Final weights of excised tumors, *p<0.05. g) Relative size of excised tumors and spleens. h) Weekly IVIS imaging of mice injected with luciferin. i) Quantitation of the bioluminescence data is presented as total flux in protons/sec. j) Increase in tumor growth blockade due to MPL-pSi microparticles (red) over that induced by DOX-NPs (blue) shown graphically across time. k) Similar to A & E, 4T1 tumor growth was monitored in BALB/c mice using calipers. Mice were injected with PBS (control), MPL-liposomes, or free MPL as indicated by the arrows (control vs MPL liposome, *p<0.05, n = 3/group).</p
    corecore