266 research outputs found
Mining Representative Unsubstituted Graph Patterns Using Prior Similarity Matrix
One of the most powerful techniques to study protein structures is to look
for recurrent fragments (also called substructures or spatial motifs), then use
them as patterns to characterize the proteins under study. An emergent trend
consists in parsing proteins three-dimensional (3D) structures into graphs of
amino acids. Hence, the search of recurrent spatial motifs is formulated as a
process of frequent subgraph discovery where each subgraph represents a spatial
motif. In this scope, several efficient approaches for frequent subgraph
discovery have been proposed in the literature. However, the set of discovered
frequent subgraphs is too large to be efficiently analyzed and explored in any
further process. In this paper, we propose a novel pattern selection approach
that shrinks the large number of discovered frequent subgraphs by selecting the
representative ones. Existing pattern selection approaches do not exploit the
domain knowledge. Yet, in our approach we incorporate the evolutionary
information of amino acids defined in the substitution matrices in order to
select the representative subgraphs. We show the effectiveness of our approach
on a number of real datasets. The results issued from our experiments show that
our approach is able to considerably decrease the number of motifs while
enhancing their interestingness
Combining Clustering techniques and Formal Concept Analysis to characterize Interestingness Measures
Formal Concept Analysis "FCA" is a data analysis method which enables to
discover hidden knowledge existing in data. A kind of hidden knowledge
extracted from data is association rules. Different quality measures were
reported in the literature to extract only relevant association rules. Given a
dataset, the choice of a good quality measure remains a challenging task for a
user. Given a quality measures evaluation matrix according to semantic
properties, this paper describes how FCA can highlight quality measures with
similar behavior in order to help the user during his choice. The aim of this
article is the discovery of Interestingness Measures "IM" clusters, able to
validate those found due to the hierarchical and partitioning clustering
methods "AHC" and "k-means". Then, based on the theoretical study of sixty one
interestingness measures according to nineteen properties, proposed in a recent
study, "FCA" describes several groups of measures.Comment: 13 pages, 2 figure
Categorization of interestingness measures for knowledge extraction
Finding interesting association rules is an important and active research
field in data mining. The algorithms of the Apriori family are based on two
rule extraction measures, support and confidence. Although these two measures
have the virtue of being algorithmically fast, they generate a prohibitive
number of rules most of which are redundant and irrelevant. It is therefore
necessary to use further measures which filter uninteresting rules. Many
synthesis studies were then realized on the interestingness measures according
to several points of view. Different reported studies have been carried out to
identify "good" properties of rule extraction measures and these properties
have been assessed on 61 measures. The purpose of this paper is twofold. First
to extend the number of the measures and properties to be studied, in addition
to the formalization of the properties proposed in the literature. Second, in
the light of this formal study, to categorize the studied measures. This paper
leads then to identify categories of measures in order to help the users to
efficiently select an appropriate measure by choosing one or more measure(s)
during the knowledge extraction process. The properties evaluation on the 61
measures has enabled us to identify 7 classes of measures, classes that we
obtained using two different clustering techniques.Comment: 34 pages, 4 figure
Towards an Efficient Discovery of the Topological Representative Subgraphs
With the emergence of graph databases, the task of frequent subgraph
discovery has been extensively addressed. Although the proposed approaches in
the literature have made this task feasible, the number of discovered frequent
subgraphs is still very high to be efficiently used in any further exploration.
Feature selection for graph data is a way to reduce the high number of frequent
subgraphs based on exact or approximate structural similarity. However, current
structural similarity strategies are not efficient enough in many real-world
applications, besides, the combinatorial nature of graphs makes it
computationally very costly. In order to select a smaller yet structurally
irredundant set of subgraphs, we propose a novel approach that mines the top-k
topological representative subgraphs among the frequent ones. Our approach
allows detecting hidden structural similarities that existing approaches are
unable to detect such as the density or the diameter of the subgraph. In
addition, it can be easily extended using any user defined structural or
topological attributes depending on the sought properties. Empirical studies on
real and synthetic graph datasets show that our approach is fast and scalable
A scalable mining of frequent quadratic concepts in d-folksonomies
Folksonomy mining is grasping the interest of web 2.0 community since it
represents the core data of social resource sharing systems. However, a
scrutiny of the related works interested in mining folksonomies unveils that
the time stamp dimension has not been considered. For example, the wealthy
number of works dedicated to mining tri-concepts from folksonomies did not take
into account time dimension. In this paper, we will consider a folksonomy
commonly composed of triples and we shall consider the
time as a new dimension. We motivate our approach by highlighting the battery
of potential applications. Then, we present the foundations for mining
quadri-concepts, provide a formal definition of the problem and introduce a new
efficient algorithm, called QUADRICONS for its solution to allow for mining
folksonomies in time, i.e., d-folksonomies. We also introduce a new closure
operator that splits the induced search space into equivalence classes whose
smallest elements are the quadri-minimal generators. Carried out experiments on
large-scale real-world datasets highlight good performances of our algorithm
Multiple instance learning for sequence data with across bag dependencies
In Multiple Instance Learning (MIL) problem for sequence data, the instances
inside the bags are sequences. In some real world applications such as
bioinformatics, comparing a random couple of sequences makes no sense. In fact,
each instance may have structural and/or functional relations with instances of
other bags. Thus, the classification task should take into account this across
bag relation. In this work, we present two novel MIL approaches for sequence
data classification named ABClass and ABSim. ABClass extracts motifs from
related instances and use them to encode sequences. A discriminative classifier
is then applied to compute a partial classification result for each set of
related sequences. ABSim uses a similarity measure to discriminate the related
instances and to compute a scores matrix. For both approaches, an aggregation
method is applied in order to generate the final classification result. We
applied both approaches to solve the problem of bacterial Ionizing Radiation
Resistance prediction. The experimental results of the presented approaches are
satisfactory
Protein sequences classification by means of feature extraction with substitution matrices
<p>Abstract</p> <p>Background</p> <p>This paper deals with the preprocessing of protein sequences for supervised classification. Motif extraction is one way to address that task. It has been largely used to encode biological sequences into feature vectors to enable using well-known machine-learning classifiers which require this format. However, designing a suitable feature space, for a set of proteins, is not a trivial task. For this purpose, we propose a novel encoding method that uses amino-acid substitution matrices to define similarity between motifs during the extraction step.</p> <p>Results</p> <p>In order to demonstrate the efficiency of such approach, we compare several encoding methods using some machine learning classifiers. The experimental results showed that our encoding method outperforms other ones in terms of classification accuracy and number of generated attributes. We also compared the classifiers in term of accuracy. Results indicated that SVM generally outperforms the other classifiers with any encoding method. We showed that SVM, coupled with our encoding method, can be an efficient protein classification system. In addition, we studied the effect of the substitution matrices variation on the quality of our method and hence on the classification quality. We noticed that our method enables good classification accuracies with all the substitution matrices and that the variances of the obtained accuracies using various substitution matrices are slight. However, the number of generated features varies from a substitution matrix to another. Furthermore, the use of already published datasets allowed us to carry out a comparison with several related works.</p> <p>Conclusions</p> <p>The outcomes of our comparative experiments confirm the efficiency of our encoding method to represent protein sequences in classification tasks.</p
Towards a semantic and statistical selection of association rules
The increasing growth of databases raises an urgent need for more accurate
methods to better understand the stored data. In this scope, association rules
were extensively used for the analysis and the comprehension of huge amounts of
data. However, the number of generated rules is too large to be efficiently
analyzed and explored in any further process. Association rules selection is a
classical topic to address this issue, yet, new innovated approaches are
required in order to provide help to decision makers. Hence, many interesting-
ness measures have been defined to statistically evaluate and filter the
association rules. However, these measures present two major problems. On the
one hand, they do not allow eliminating irrelevant rules, on the other hand,
their abun- dance leads to the heterogeneity of the evaluation results which
leads to confusion in decision making. In this paper, we propose a two-winged
approach to select statistically in- teresting and semantically incomparable
rules. Our statis- tical selection helps discovering interesting association
rules without favoring or excluding any measure. The semantic comparability
helps to decide if the considered association rules are semantically related
i.e comparable. The outcomes of our experiments on real datasets show promising
results in terms of reduction in the number of rules
- …