7 research outputs found

    Cell-permeable Non-hydrolyzable cAMP Derivatives as Tools for Analysis of Signaling Pathways Controlling Gene Regulation in Dictyostelium

    Get PDF
    A novel class of cAMP derivatives were tested for binding to surface cAMP receptors (CAR), protein kinase A (PKA), and cAMP-phosphodiesterase (PDE) and for induction of three classes of cAMP regulated genes in Dictyostelium discoideum. These derivatives carry sulfur substitutions for either the axial (Sp) or equatorial (Rp) exocyclic oxygen atoms, while further modifications were introduced to provide specificity for binding to either CAR or PKA, and/or to increase lipophilicity and render the derivatives membrane-permeable. All derivatives bind weakly to PDE and are almost not degraded during incubation with Dictyostelium cells. One cAMP derivative, 6-thioethylpurineriboside 3',5‘-monophosphorothioate, Sp-isomer (Sp-6SEtcPuMPS), fulfills the criteria for selective activation of PKA in vivo. The compound enters Dictyostelium cells and reaches an intracellular concentration of 1 µM, sufficient to activate PKA, at an extracellular concentration of 30 µM, which is insufficient to activate CAR. Expression of cAMP-regulated prespore and prestalk genes and the aggregative PDE gene are effectively induced by CAR agonists and very poorly by PKA agonists. Even Sp-6SEtcPuMPS is ineffective to induce gene expression. These data not only indicate that surface cAMP receptors are the first targets for cAMP-induced gene expression, but argue against direct induction of expression of these genes by cAMP-induced PKA activation

    The Cyclic Nucleotide Specificity of Eight cAMP-binding Proteins in Dictyostelium discoideum Is Correlated into Three Groups

    Get PDF
    cAMP is a mediator of inter- and intracellular events in Dictyostelium discoideum and is thought to act through specific receptors. Eight forms of cAMP-binding proteins have been described in this organism: four forms of a cell surface receptor, a cell surface and extracellular phosphodiesterase, an intracellular cAMP-dependent protein kinase (CAK), and a recently identified cAMP-binding protein (CABP1) that is present on the cell surface, in the cytoplasm, and in the nucleus. In this study we have analyzed the cyclic nucleotide specificity of these cAMP-binding proteins using 13 derivatives of cAMP with modifications in the adenine, ribose, and phosphate moiety. The results suggest that the cAMP-binding proteins belong to three groups: (i) four forms of the cell surface receptor, (ii) two forms of an intracellular receptor (CABP1 and CAK), and (iii) cell surface and extracellular phosphodiesterase. cAMP is probably bound to the surface receptors in the anti conformation in a hydrophobic cleft of the receptor with essential interactions at N6H2' and O3'. In contrast, cAMP is probably bound to CAK and CABP1 in the syn conformation with essential interactions at O2', O3', O5', and exocyclic oxygen. Finally, binding of cAMP to phosphodiesterase involves only O3' and exocyclic oxygen. The cyclic nucleotide specificity of cAMP-induced processes in D. discoideum indicates that the cell surface receptors participate in the transduction of the cAMP signal during chemotaxis and cell differentiation. Functions for CABP1 and CAK in these processes are presently elusive.

    Kinetics and nucleotide specificity of a surface cAMP binding site in Dictyostelium discoideum, which is not down-regulated by cAMP

    Get PDF
    Dictyostelium cells exhibit four types of kinetically distinct surface cAMP binding sites, the AH, AL, BS, and BSS sites, which are down-regulated during persistent stimulation with cAMP. Although most cAMP-induced responses are subject to desensitization during constant stimulation, some responses, notably the induction of post-aggregative gene expression, require persistent cAMP stimulation. The kinetics and specificity of residual cAMP-binding activity in cells treated for 4 h with micromolar cAMP were investigated. It was found that around 4000 rapidly dissociating binding sites per cell with an affinity of about 300 nM are retained after down-regulation. The nucleotide specificity of the remaining sites was very similar, but not completely identical to the AH, AL and B sites, suggesting that these sites belong to the same class of cell surface cAMP receptors and may be utilized to mediate responses requiring continuous cAMP stimulation.

    Cell-permeable Non-hydrolyzable cAMP Derivatives as Tools for Analysis of Signaling Pathways Controlling Gene Regulation in Dictyostelium

    Get PDF
    A novel class of cAMP derivatives were tested for binding to surface cAMP receptors (CAR), protein kinase A (PKA), and cAMP-phosphodiesterase (PDE) and for induction of three classes of cAMP regulated genes in Dictyostelium discoideum. These derivatives carry sulfur substitutions for either the axial (Sp) or equatorial (Rp) exocyclic oxygen atoms, while further modifications were introduced to provide specificity for binding to either CAR or PKA, and/or to increase lipophilicity and render the derivatives membrane-permeable. All derivatives bind weakly to PDE and are almost not degraded during incubation with Dictyostelium cells. One cAMP derivative, 6-thioethylpurineriboside 3',5‘-monophosphorothioate, Sp-isomer (Sp-6SEtcPuMPS), fulfills the criteria for selective activation of PKA in vivo. The compound enters Dictyostelium cells and reaches an intracellular concentration of 1 µM, sufficient to activate PKA, at an extracellular concentration of 30 µM, which is insufficient to activate CAR. Expression of cAMP-regulated prespore and prestalk genes and the aggregative PDE gene are effectively induced by CAR agonists and very poorly by PKA agonists. Even Sp-6SEtcPuMPS is ineffective to induce gene expression. These data not only indicate that surface cAMP receptors are the first targets for cAMP-induced gene expression, but argue against direct induction of expression of these genes by cAMP-induced PKA activation.
    corecore