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1. S U M M A R Y  

Dictyos te l ium cells exhibit four types of kineti- 
cally distinct surface cAMP binding sites, the A ~, 
A c, B s, and B ss sites, which are down-regulated 
during persistent stimulation with cAMP. Al- 
though most cAMP-induced responses are sub- 
ject to desensitization during constant stimula- 
tion, some responses, notably the induction of 
post-aggregative gene expression, require persis- 
tent cAMP stimulation. The kinetics and speci- 
ficity of residual cAMP-binding activity in cells 
treated for 4 h with micromolar cAMP were 
investigated. It was found that around 4000 
rapidly dissociating binding sites per  cell with an 
affinity of about 300 nM are retained after 
down-regulation. The nucleotide specificity of the 
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remaining sites was very similar, but not com- 
pletely identical to the A H, A c and B sites, sug- 
gesting that these sites belong to the same class 
of cell surface cAMP receptors and may be uti- 
lized to mediate responses requiring continuous 
cAMP stimulation. 

2. I N T R O D U C T I O N  

Extracellular cAMP regulates major aspects of 
the Dictyos te l ium discoideum developmental  pro- 
gram. It functions as a chemoattractant  during 
aggregation [1] and probably also during multicel- 
lular morphogenesis [2]. Furthermore,  cAMP reg- 
ulates the expression of several classes of genes 
during different stages of development [3]. cAMP 
interacts with cell surface receptors and elicits 
the accumulation of several intracellular second 
messengers such as cAMP, cGMP, inositol- 
(1,4,5)-triphosphate and Ca 2+ ions via interaction 
with GTP-binding proteins [4-9]. These re- 



10 

sponses are transient, because the cells adapt to 
constant cAMP levels [10,11]. 

So far, four kinetically distinct receptor forms 
(A H, A L, B s, and B ss) with different dissociation 
constants and dissociation rates have been char- 
acterized [12-15], which show virtually identical 
cyclic nucleotide-binding specificity. Besides the 
cell surface cAMP receptor, three other cAMP- 
binding proteins have been identified: an intracel- 
lular cAMP-dependent  protein kinase (CAK) [16], 
an intracellular cAMP-binding protein of un- 
known function (CABP1) [17] and a cAMP-phos- 
phodiesterase (cAMP-PDE) [18]. The nucleotide 
specificity of these cAMP-binding proteins is very 
different from that of the surface receptors 
[14,15,19,20]. Cyclic AMP-induced responses such 
as chemotaxis, cAMP and cGMP accumulation 
and the induction of post-aggregative gene ex- 
pression show a nucleotide specificity which is 

similar to that of the surface cAMP receptor and 
completely different from the intracellular cAMP 
binding proteins, suggesting that all these re- 
sponses are mediated by surface cAMP receptors 
[21-231. 

Persistent stimulation of cells with cAMP in- 
duces down-regulation of cAMP binding activity 
[24-26]. During this process, surface cAMP re- 
ceptors are sequestered into vesicles and de- 
graded [27]. Most cAMP-induced responses are 
concomitantly down-regulated, but some re- 
sponses, such as the induction of post-aggregative 
gene expression require continuous stimulation 
with micromolar cAMP concentrations during 
several hours [23]. In this study the effect of 
prolonged cAMP stimulation on binding activity 
on the cell surface was examined. The kinetics 
and cyclic nucleotide specificity of the remaining 
binding sites was investigated. 
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Fig. 1. Effects of persistent cAMP stimulation on cAMP binding to A- and B-sites. Aggregation competent cells were incubated in 
the absence (o )  or presence (e) of 100/xM cAMP. After 4 h, cells were collected and thoroughly washed with PB. To measure total 
cAMP-binding activity, cells were incubated with 20, 100, 500, 1000, 2000 and 10000 nM [3H]-cAMP for 1 min incubation at 0 °C  
(A). To measure binding to B-sites, cells were first incubated for 1 min at 0 °C  with 2, 10, 30, 100 nM [3H]-cAMP and precipitated 
after a 10-s chase with 100/zM cAMP (B). The inserts are enlargements of the main figure with both axes magnified by the same 
factor (15x in A and 10x in B). The results shown are the means of triplicate determinations of an experiment that was 

reproduced once. 
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3. MATERIALS AND METHODS 

3. I. Culture and incubation conditions 
Dictyostelium discoideum strain NC4 was grown 

in association with Escherichia coli 281 on glu- 
cose peptone agar. Cells were freed from bacteria 
by repeated washings with PB (10 mM Na/K- 
phosphate buffer pH 6.5), distributed on non- 

nutrient agar (1.5% agar in PB) and incubated for 
16 h at 6” C to induce aggregation-competence 

WI. 

3.2. Materials 
[8-3H]cAMP (1.92 TBq/mmol) was obtained 

from Amersham (U.K.). The CAMP derivatives 1, 
3, 5, 6, 13 and I4 were obtained form Boehringer 
(F.R.G.); compound 5 was also purchased from 
Sigma (U.S.A.). Compound 4 was a generous gift 
of Dr. R. Hanze (The Upjohn Co.). Compounds 
2, 7, 8, 11 and 12 were synthesized as previously 
described [28-321. Compound 17 was kindly sup- 
plied by Dr. D. Shugar (Polish Acad. of Science, 
Warsaw). Compounds 9, 10, 15, 16, 18 and 19 
were synthesized according to the method of Ge- 
nieser et al. [33,34]. 

3.3. CAMP binding assays 
Scatchard analysis of CAMP binding to A sites 

was performed by incubating 8 X 10’ aggregation 
competent cells for 1 min at 0 ’ C with 2-10000 
nM r3H]-cAMP and 5 mM dithiothreitol (final 
concentrations) in a total volume of 100 ~1. The 

cells were subsequently centrifuged through sili- 
cone oil and the radioactivity of the pellet was 
measured [12]. For Scatchard analysis of B sites, 
8 x lo6 cells were incubated for 1 min at 0 o C 
with 2-100 nM [3H]-cAMP and 5 mM DTT in a 
total volume of 100 ~1, subsequently the incuba- 
tion mixture was diluted with 1 ml 100 PM CAMP, 
and after an additional 10 s the cells were cen- 
trifuged through silicon oil. 

To measure nucleotide specificity of AH, AL 
and B sites, cells were incubated for 1 min at 
0 o C with respectively 3, 100 or 10 nM [3H]-~AMP 
and increasing concentrations of unlabelled cyclic 
nucleotides. To assay AH and AL sites, cells were 
immediately centrifuged through silicon oil; to 
assay B sites, cells were centrifuged after a 10-s 

chase with 100 PM CAMP. To measure the speci- 

ficity of sites resistent to down-regulation, aggre- 
gation competent cells were pre-incubated for 4 h 
with 100 PM CAMP, added at 60-min intervals, 
washed four times with PB, and resuspended to 
10’ cells/ml. Cells were incubated with 10 nM 
[“HI-CAMP and CAMP derivatives for 1 min at 
0 o C and centrifuged through silicon oil. Assay 

blanks for all assays were obtained by including 
100 PM CAMP in the incubation mixture. 

4. RESULTS AND DISCUSSION 

4.1. Scatchard analysis of down-regulated cells 
Kinetic studies showed that 96% CAMP-bind- 

ing activity in aggregation competent cells con- 
sists of rapidly dissociating A sites (off-rate ap- 

Fig. 2. Structures of CAMP derivatives. 
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prox. 1.5 s), which exist in a high (A H) and a low 
(A L) affinity form. The remaining 4% binding 
activity represent the slow (off-rate approx. 15 s) 
and superslow (off-rate approx. 150 s) dissociat- 
ing B s and B ~ sites [12,13]. A short (15 min) 
treatment of ceils with cAMP induces a 90% 
reduction in the number of A sites. The number 
of B sites is unaffected, but their affinity de- 
creases 10-fold [25,26]. 

The fate of A and B sites, after 4 h of incuba- 
tion with 100/~M cAMP was investigated (super- 
saturating stimuli are required during prolonged 
stimulation, because due to the presence of cAMP 
phosphodiesterases, cAMP is rapidly degraded). 
Figs. 1A and B show Scatchard plots of [~H]- 
cAMP binding to aggregation competent cells 
incubated for 4 h in the presence and absence of 
constant cAMP stimulation. At binding equilib- 

rium (Fig. 1A), both A and B sites are measured, 
but since the B-sites comprise only 4% of total 
binding activity, binding at equilibrium mainly 
represents the A sites. Binding of [3H]-cAMP to 
B sites is measured 10 s after addition of excess 
cAMP (Fig. 1B), in which case binding to the fast 
dissociating A sites is lost and binding to the slow 
dissociating B sites persists. 

Equilibrium binding to control cells revealed 
about 100000 A sites which were composed of a 
high-affinity (K d approx 45 nM) and a low-affin- 
ity (K d approx. 450 nM) component. Binding, 10 
s after dissociation (B sites), showed in control 
cells about 4800 sites/cell  with a K d of approx. 
40 nM. After treatment of cells with cAMP for 4 
h, a 95% reduction of equilibrium binding had 
occurred; the residual 4000 rapidly dissociating 
sites appear to belong to a single class with a K d 

T a b l e  1 

B ind ing  specif ic i ty  of  c A M P  b ind ing  sites in D. discoideum 

No.  Der iva t ive  6 J G  ( k J / m o l )  

Su r f ace  c A M P  b ind ing  si tes l n t r a c e l l u l a r  b ind ing  p ro t e in  

C A H A I B C A B P 1  C A K  P D E  

1. c A M P  0.0 0.0 0.11 0.0 0.0 0.0 0.0 

2. N I O - c A M P  10.6+- 1.7 8.5 * 11.0 * 9.9 * 3.9 4.7 3.2 

3. 6 C I - c P u M P  16.5 + 1.9 17.8 * 17.5 * 16.4 * - 0 . 2  1.8 2.4 

4. 7 C H - c A M P  9.7+{) .2  12.4 * 10.7 * 13.5 * 1/.72 0.7 0.0 

5. 8 B r - c A M P  9 . 8 +  1.2 1 2 . 2 +  1.0 11.5+_0.6 11.1 + 0 . 8  - 0 . 5  - 2 . 6  5.4 

6. 2 ' H - c A M P  4 . 7 + 0 . 8  6.2 * 6.6 * 5.6 * 19.0 22.0 4.4 

7. 3 ' N H - c A M P  15.7 15.2 * 13.5 * 15.0 * 17.1 13.1/ > 16.11 

8. 5 ' N H - c A M P  2.7 +- 0.4 3.4 * 3.7 * 4.0 * 16.9 17.5 6.0 

9. ( S p ) - c A M P S  13.6+-4.4 11.9 * 11.3 * 13.3 * 6.9 4.5 10.2 

10. ( R p ) - c A M P S  11).9+-3.1 14.6 * 13.3 * 14.9 * 17.0 12.0 > 16.[) 

11. c B I M P  13.5 14.6 * 13.8 * 15.8 * 7.2 6.11 8.3 

12. c P u M P  >_ 18 - - 2.2 3.9 8.3 

13. c I M P  _> 18 3.4 3.9 4.5 

14. c G M P  > 18 - - - 12.3 13.9 4.4 

15. 5 ,6 -CI2 -cBIMP 1 2 . 9 + 0 . 0  12.9 - - - 

16. 5 ,6-F2-cB1MP >_ 15 18.5 - - - 
17. 8 O H i P - c A M P  7.5 + 1.4 9.7 +_ 0.8 . . . .  

18. 8 C I - c A M P  10.5 10.0 . . . .  
19. 8 p C P T - c A M P  8.3_+2.4 1 2 . 8 + 0 . 8  12.5_+ 1.4 1 2 . 3 +  1.3 - 

B i n d i n g  to A H, A L, B a n d  C si tes was  m e a s u r e d  as d e s c r i b e d  in MATERIALS AND METHODS. D a t a  we re  s t a n d a r d i z e d  us ing  the  

fol lowing e q u a t i o n :  6 A G  = R T  In K o  5 d e r i v a t i v e / K o .  5 c A M P  [35]. T h e  K o  5 r e p r e s e n t s  the  c o n c e n t r a t i o n  o f  der iva t ive  t ha t  
i nduces  ha l f -max ima l  inhib i t ion  o f  [ 3 H ] - c A M P  b ind ing .  M e a n s  a n d  SD of  3 - 6  ind iv idua l  e x p e r i m e n t s  p e r f o r m e d  in t r ip l ica te  a re  

p r e s e n t e d .  S o m e  der iva t ives  w e r e  t e s t ed  once .  T h e  a z l G  va lues  for  the  b ind ing  o f  c A M P  der iva t ives  to A H, A l-, B-sites,  m a r k e d  * 
a n d  to C A B P 1  were  r e t r i eved  f rom V a n  M e n t s - C o h e n  a n d  V a n  H a a s t e r t  [15]; T h e  ~/~G va lues  for  b i n d i n g  of  c A M P  der iva t ives  to 

C A K  a n d  P D E  are  de r ived  f r o m  D e  Wit  et  al. [19] a n d  V a n  H a a s t e r t  et  al. [20], respect ive ly .  - ,  not  d e t e r m i n e d .  



of approx.  300 nM. Binding  to slowly dissocia t ing 
sites was r e d u c e d  af te r  c A M P  t r e a t m e n t  to abou t  
300 sites with a K a of abou t  70 nM. 

4.2. Specificity of down-regulation resistant cAMP 
binding activity 

To es tabl ish  w h e t h e r  the  c A M P - b i n d i n g  sites, 
which can be  d e t e c t e d  af te r  4-h s t imula t ion  with 
mic romola r  c A M P  concen t ra t ions  ( fur ther  ca l led  
'C '  sites), r e p r e s e n t e d  cell surface c A M P  recep-  
tors or  o the r  Dictyostelium c A M P - b i n d i n g  pro-  
teins,  the  nuc leo t ide  specif ici ty of  these  sites were  
c o m p a r e d  with the  specif ici ty of  d i f fe ren t  forms 
of  surface c A M P  recep to r s  and  with c A M P - P D E ,  
C A K  and CABP1 using 18 d i f fe ren t  c A M P  
der ivat ives  (Fig. 2). 

The  da t a  given in Tab le  1 show that  the  speci-  
ficity of  the  C sites was comple t e ly  d i f fe ren t  f rom 
that  of  the  in t race l lu la r  c A M P - b i n d i n g  p ro te ins  
CABP1 and  CAK.  F o r  instance,  N 1 0 - c A M P ,  
6CI -cPuMP and 7 C H - c A M P ,  which are  good  lig- 
ands  for the  in t r ace l lu l a r  c A M P - b i n d i n g  pro te ins ,  
a re  poor  l igands  for the  C sites. 2 ' H - c A M P ,  
which is a poo r  CABP1 and C A K  ligand,  b inds  
well to the  C sites. The  specif ici ty of  the  C sites 
also did  not  r e semble  the  b ind ing  specif ici ty of  
c A M P - P D E .  

Bind ing  to A H, A L and  B sites showed vir tual ly  
ident ica l  specificity.  Binding  to C sites was very 
s imilar  to A " ,  A L and B sites when  compar ing  the 
der ivat ives  2, 3, 4, 7, 8, 11, 15, 16, and  18. How- 
ever,  the re  a p p e a r e d  to be a bias for der ivat ives  
with bulky subs t i tu t ions  at the  CS-posi t ion,  such 
as c o m p o u n d s  5, 17 and 19 to b ind  be t t e r  to C 
sites than  to the  o the r  surface  c A M P  b ind ing  
sites. The  6AG values  for 8 B r - c A M P  binding  to 
A " ,  A L and B sites were  previously  r e p o r t e d  to 
be a round  16 k J / m o l  [14,15]. Us ing  8 B r - c A M P  
p r e p a r a t i o n s  f rom d i f f e r en t  sources ,  va lues  
a r o u n d  11 k J / m o l  were  consis tent ly  found  dur ing  
the  p re sen t  study. 

The  da t a  p r e s e n t e d  here  indica te  that  a f te r  
p ro longed  c A M P  s t imula t ion  of  cells, a class of  
low-affini ty r ecep to r s  r emains  p r e sen t  with simi- 
lar,  but  not  comple t e ly  ident ica l  nuc leo t ide  speci-  
ficity to the  A and B sites. The  down- regu la t ion-  
res is tant  b ind ing  sites may  be involved in re- 
sponses ,  such as c A M P - i n d u c e d  pos t -aggrega t ive  

13 

gene  express ion,  which requ i re  sus ta ined  expo-  
sure to mic romola r  c A M P  concent ra t ions .  How- 
ever, the  d iss imi lar i ty  in nuc leo t ide  specif ici ty is 
not  suff iciently p r o n o u n c e d  to conc lude  that  
down- regu la t ion - re s i s t an t  sites r ep re sen t  a differ-  
ent  class of  receptors ,  or  to cor re la te  specif ici ty of  
pos t -agrega t ive  gene express ion  with specific sub- 
classes of  surface c A M P - b i n d i n g  sites. 
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