10,777 research outputs found

    Jet Formation in the magnetospheres of supermassive black holes: analytic solutions describing energy loss through Blandford-Znajek processes

    Full text link
    In this paper, we provide exact solutions for the extraction of energy from a rotating black hole via both the electromagnetic Poynting flux and matter currents. By appropriate choice of a radially independent poloidal function Λ(θ)\Lambda(\theta), we find solutions where the dominant outward energy flux is along the polar axis, consistent with a jet-like collimated outflow, but also with a weaker flux of energy along the equatorial plane. Unlike all the previously obtained solutions (Blandford & Znajek (1977), Menon & Dermer (2005)), the magnetosphere is free of magnetic monopoles everywhere

    Learning with Symmetric Label Noise: The Importance of Being Unhinged

    Full text link
    Convex potential minimisation is the de facto approach to binary classification. However, Long and Servedio [2010] proved that under symmetric label noise (SLN), minimisation of any convex potential over a linear function class can result in classification performance equivalent to random guessing. This ostensibly shows that convex losses are not SLN-robust. In this paper, we propose a convex, classification-calibrated loss and prove that it is SLN-robust. The loss avoids the Long and Servedio [2010] result by virtue of being negatively unbounded. The loss is a modification of the hinge loss, where one does not clamp at zero; hence, we call it the unhinged loss. We show that the optimal unhinged solution is equivalent to that of a strongly regularised SVM, and is the limiting solution for any convex potential; this implies that strong l2 regularisation makes most standard learners SLN-robust. Experiments confirm the SLN-robustness of the unhinged loss

    Corrosion Behavior of Parylene-Metal-Parylene Thin Films in Saline

    Get PDF
    In this paper, we study the corrosion behavior of parylene-metal-parylene thin films using accelerated-lifetime soak tests. The samples under test are thin film resistors with a 200 nm layer of Au sandwiched by parylene-C on both sides, fabricated with parylene-metal skin technology. The samples are tested in hot saline both passively and actively, and different failure modes are observed using optical and electron-beam metrologies. Bubbles and delamination are first seen in the samples after 2 days of soaking under passive conditions, and followed by metal corrosion. While under active conditions, either bubbles or parylene breakdowns are observed depending on the thickness of parylene packaging. These results contribute to a better understanding of the failure mechanisms of parylene packaging in body fluids
    corecore