30 research outputs found

    Comparison of the Transmembrane Mucins MUC1 and MUC16 in Epithelial Barrier Function

    Get PDF
    Membrane-anchored mucins are present in the apical surface glycocalyx of mucosal epithelial cells, each mucosal epithelium having at least two of the mucins. The mucins have been ascribed barrier functions, but direct comparisons of their functions within the same epithelium have not been done. In an epithelial cell line that expresses the membrane-anchored mucins, MUC1 and MUC16, the mucins were independently and stably knocked down using shRNA. Barrier functions tested included dye penetrance, bacterial adherence and invasion, transepithelial resistance, tight junction formation, and apical surface size. Knockdown of MUC16 decreased all barrier functions tested, causing increased dye penetrance and bacterial invasion, decreased transepithelial resistance, surprisingly, disruption of tight junctions, and greater apical surface cell area. Knockdown of MUC1 did not decrease barrier function, in fact, barrier to dye penetrance and bacterial invasion increased significantly. These data suggest that barrier functions of membrane-anchored mucins vary in the context of other membrane mucins, and MUC16 provides a major barrier when present

    Halothiobacillus neapolitanus Carboxysomes Sequester Heterologous and Chimeric RubisCO Species

    Get PDF
    Background: The carboxysome is a bacterial microcompartment that consists of a polyhedral protein shell filled with ribulose 1,5-bisphosphate carboxylase/oxygenase (RubisCO), the enzyme that catalyzes the first step of CO(2) fixation via the Calvin-Benson-Bassham cycle. Methodology/Principal Findings: To analyze the role of RubisCO in carboxysome biogenesis in vivo we have created a series of Halothiobacillus neapolitanus RubisCO mutants. We identified the large subunit of the enzyme as an important determinant for its sequestration into alpha-carboxysomes and found that the carboxysomes of H. neapolitanus readily incorporate chimeric and heterologous RubisCO species. Intriguingly, a mutant lacking carboxysomal RubisCO assembles empty carboxysome shells of apparently normal shape and composition. Conclusions/Significance: These results indicate that carboxysome shell architecture is not determined by the enzyme they normally sequester. Our study provides, for the first time, clear evidence that carboxysome contents can be manipulated and suggests future nanotechnological applications that are based upon engineered protein microcompartments

    The Pentameric Vertex Proteins Are Necessary for the Icosahedral Carboxysome Shell to Function as a CO\u3csub\u3e2\u3c/sub\u3e Leakage Barrier

    Get PDF
    Background Carboxysomes are polyhedral protein microcompartments found in many autotrophic bacteria; they encapsulate the CO2 fixing enzyme, ribulose-1,5-bisphosphate carboxylase/oxygenase (RubisCO) within a thin protein shell and provide an environment that enhances the catalytic capabilities of the enzyme. Two types of shell protein constituents are common to carboxysomes and related microcompartments of heterotrophic bacteria, and the genes for these proteins are found in a large variety of bacteria. Methodology/Principal Findings We have created a Halothiobacillus neapolitanus knockout mutant that does not produce the two paralogous CsoS4 proteins thought to occupy the vertices of the icosahedral carboxysomes and related microcompartments. Biochemical and ultrastructural analyses indicated that the mutant predominantly forms carboxysomes of normal appearance, in addition to some elongated microcompartments. Despite their normal shape, purified mutant carboxysomes are functionally impaired, although the activities of the encapsulated enzymes are not negatively affected. Conclusions/Significance In the absence of the CsoS4 proteins the carboxysome shell loses its limited permeability to CO2 and is no longer able to provide the catalytic advantage RubisCO derives from microcompartmentalization. This study presents direct evidence that the diffusion barrier property of the carboxysome shell contributes significantly to the biological function of the carboxysome

    The Pentameric Vertex Proteins Are Necessary for the Icosahedral Carboxysome Shell to Function as a CO2 Leakage Barrier

    Get PDF
    BACKGROUND: Carboxysomes are polyhedral protein microcompartments found in many autotrophic bacteria; they encapsulate the CO(2) fixing enzyme, ribulose-1,5-bisphosphate carboxylase/oxygenase (RubisCO) within a thin protein shell and provide an environment that enhances the catalytic capabilities of the enzyme. Two types of shell protein constituents are common to carboxysomes and related microcompartments of heterotrophic bacteria, and the genes for these proteins are found in a large variety of bacteria. METHODOLOGY/PRINCIPAL FINDINGS: We have created a Halothiobacillus neapolitanus knockout mutant that does not produce the two paralogous CsoS4 proteins thought to occupy the vertices of the icosahedral carboxysomes and related microcompartments. Biochemical and ultrastructural analyses indicated that the mutant predominantly forms carboxysomes of normal appearance, in addition to some elongated microcompartments. Despite their normal shape, purified mutant carboxysomes are functionally impaired, although the activities of the encapsulated enzymes are not negatively affected. CONCLUSIONS/SIGNIFICANCE: In the absence of the CsoS4 proteins the carboxysome shell loses its limited permeability to CO(2) and is no longer able to provide the catalytic advantage RubisCO derives from microcompartmentalization. This study presents direct evidence that the diffusion barrier property of the carboxysome shell contributes significantly to the biological function of the carboxysome

    A Metalloproteinase Secreted by Streptococcus pneumoniae Removes Membrane Mucin MUC16 from the Epithelial Glycocalyx Barrier

    Get PDF
    The majority of bacterial infections occur across wet-surfaced mucosal epithelia, including those that cover the eye, respiratory tract, gastrointestinal tract and genitourinary tract. The apical surface of all these mucosal epithelia is covered by a heavily glycosylated glycocalyx, a major component of which are membrane-associated mucins (MAMs). MAMs form a barrier that serves as one of the first lines of defense against invading bacteria. While opportunistic bacteria rely on pre-existing defects or wounds to gain entry to epithelia, non opportunistic bacteria, especially the epidemic disease-causing ones, gain access to epithelial cells without evidence of predisposing injury. The molecular mechanisms employed by these non opportunistic pathogens to breach the MAM barrier remain unknown. To test the hypothesis that disease-causing non opportunistic bacteria gain access to the epithelium by removal of MAMs, corneal, conjunctival, and tracheobronchial epithelial cells, cultured to differentiate to express the MAMs, MUCs 1, 4, and 16, were exposed to a non encapsulated, non typeable strain of Streptococcus pneumoniae (SP168), which causes epidemic conjunctivitis. The ability of strain SP168 to induce MAM ectodomain release from epithelia was compared to that of other strains of S. pneumoniae, as well as the opportunistic pathogen Staphylococcus aureus. The experiments reported herein demonstrate that the epidemic disease-causing S. pneumoniae species secretes a metalloproteinase, ZmpC, which selectively induces ectodomain shedding of the MAM MUC16. Furthermore, ZmpC-induced removal of MUC16 from the epithelium leads to loss of the glycocalyx barrier function and enhanced internalization of the bacterium. These data suggest that removal of MAMs by bacterial enzymes may be an important virulence mechanism employed by disease-causing non opportunistic bacteria to gain access to epithelial cells to cause infection

    Dissolved Inorganic Carbon Uptake in \u3ci\u3eThiomicrospira crunogena\u3c/i\u3e XCL-2 is Delta p- and ATP-sensitive and Enhances RubisCO-Mediated Carbon Fixation

    No full text
    The gammaproteobacterium Thiomicrospira crunogena XCL-2 is an aerobic sulfur-oxidizing hydrothermal vent chemolithoautotroph that has a CO2 concentrating mechanism (CCM), which generates intracellular dissolved inorganic carbon (DIC) concentrations much higher than extracellular, thereby providing substrate for carbon fixation at sufficient rate. This CCM presumably requires at least one active DIC transporter to generate the elevated intracellular concentrations of DIC measured in this organism. In this study, the half-saturation constant (K (CO2)) for purified carboxysomal RubisCO was measured (276 +/- A 18 A mu M) which was much greater than the K (CO2) of whole cells (1.03 A mu M), highlighting the degree to which the CCM facilitates CO2 fixation under low CO2 conditions. To clarify the bioenergetics powering active DIC uptake, cells were incubated in the presence of inhibitors targeting ATP synthesis (DCCD) or proton potential (CCCP). Incubations with each of these inhibitors resulted in diminished intracellular ATP, DIC, and fixed carbon, despite an absence of an inhibitory effect on proton potential in the DCCD-incubated cells. Electron transport complexes NADH dehydrogenase and the bc (1) complex were found to be insensitive to DCCD, suggesting that ATP synthase was the primary target of DCCD. Given the correlation of DIC uptake to the intracellular ATP concentration, the ABC transporter genes were targeted by qRT-PCR, but were not upregulated under low-DIC conditions. As the T. crunogena genome does not include orthologs of any genes encoding known DIC uptake systems, these data suggest that a novel, yet to be identified, ATP- and proton potential-dependent DIC transporter is active in this bacterium. This transporter serves to facilitate growth by T. crunogena and other Thiomicrospiras in the many habitats where they are found

    The Carboxysome Shell Is Permeable to Protonsâ–¿

    No full text
    Bacterial microcompartments (BMCs) are polyhedral organelles found in an increasingly wide variety of bacterial species. These structures, typified by carboxysomes of cyanobacteria and many chemoautotrophs, function to compartmentalize important reaction sequences of metabolic pathways. Unlike their eukaryotic counterparts, which are surrounded by lipid bilayer membranes, these microbial organelles are bounded by a thin protein shell that is assembled from multiple copies of a few different polypeptides. The main shell proteins form hexamers whose edges interact to create the thin sheets that form the facets of the polyhedral BMCs. Each hexamer contains a central pore hypothesized to mediate flux of metabolites into and out of the organelle. Because several distinctly different metabolic processes are found in the various BMCs studied to date, it has been proposed that a common advantage to packaging these pathways within shell-bound compartments is to optimize the concentration of volatile metabolites in the BMC by maintaining an interior pH that is lower than that of the cytoplasm. We have tested this idea by recombinantly fusing a pH-sensitive green fluorescent protein (GFP) to ribulose-1,5-bisphosphate carboxylase/oxygenase (RubisCO), the major enzyme component inside the carboxysome. Our results suggest that the carboxysomal pH is similar to that of its external environment and that the protein shell does not constitute a proton barrier. The explanation for the sundry BMC functions must therefore be sought in the characteristics of the pores that traverse their shells

    Significant knockdown of MUC1 and MUC16 proteins in both cell lysates and on apical cell surfaces following transfection with vectors expressing shMUC1 or shMUC16 sequences.

    No full text
    <p>(A) Western blots demonstrating that <b>MUC1 protein</b> is lower in both cell lysates (upper left) and on apical cell surfaces (lower left) of cell cultures transfected with shMUC1 containing vectors (shMUC1) compared to the non-transfected control (NT), scrambled shRNA (scr1) controls, as well as with shMUC16 containing vector (shMUC16) or its scrambled shRNA control (scr16). Alleles of MUC1 often differ in size and as they are co-dominantly expressed, two distinct protein sizes are evident on western blots. The graphs to the right of each blot, show densitometric analyses of bands demonstrating that MUC1 protein levels are significantly reduced by 71% in the cell lysates and 60% on apical surfaces relative to NT and scr1 controls and that MUC1 protein levels are not significantly reduced by knockdown of MUC16 (shMUC16) or its scrambled shRNA control (scr16). (B) Similarly, on the left are representative Western blots demonstrating that MUC16 protein levels are lower in cell lysates and biotinylated apical cell surface protein isolates of cells transfected with shMUC16 containing vectors compared to non-transfected (NT), or those transfected with scrambled shRNA for either MUC1 or MUC16 (scr1 and scr16) or shMUC1 containing vectors. The graphs on the right show densitometric analyses of blots indicating that MUC16 protein levels are significantly reduced in cell lysates by 70% and on apical surfaces by 51% in cells transfected with shMUC16 containing vectors in comparison to NT and scr16 controls. For both (A) and (B) protein samples from cell lysates were loaded based on equivalent micrograms of protein, and for cell surface proteins on equivalent cm<sup>2</sup> of cell growth area. Graphic representation of the relative amounts of MUC1 (upper right) and MUC16 (lower right) was derived through densitometric analyses of the blots, cell lysates were normalized to GAPDH, and all data were expressed relative to the non-transfected control (NT). Significant if p<0.01, (**). ns = non-significant, n = 5–10.</p
    corecore