578 research outputs found

    Martin Brasier's contribution to the palaeobiology of the Ediacaran–Cambrian transition

    Get PDF
    Martin Brasier's work spanned almost the entire geological column, but the origin of animals and the nature of the Cambrian explosion were areas of particular interest to him. Martin adopted a holistic approach to the study of these topics that considered the interplay between multiple geological and biological phenomena and he sought to interpret the fossil record within the broad context of geological, biogeochemical and ecological changes in the Earth system. Here we summarize Martin's main contributions to this area of research and assess the impact of his findings on the development of this field

    Temporal profile of intracranial pressure and cerebrovascular reactivity in severe traumatic brain injury and association with fatal outcome: An observational study

    Get PDF
    BACKGROUND: Both intracranial pressure (ICP) and the cerebrovascular pressure reactivity represent the dysregulation of pathways directly involved in traumatic brain injury (TBI) pathogenesis and have been used to inform clinical management. However, how these parameters evolve over time following injury and whether this evolution has any prognostic importance have not been studied. METHODS AND FINDINGS: We analysed the temporal profile of ICP and pressure reactivity index (PRx), examined their relation to TBI-specific mortality, and determined if the prognostic relevance of these parameters was affected by their temporal profile using mixed models for repeated measures of ICP and PRx for the first 240 hours from the time of injury. A total of 601 adults with TBI, admitted between September 2002 to January 2016, and with high-resolution continuous monitoring from a single centre, were studied. At 6 months postinjury, 133 (19%) patients had a fatal outcome; of those, 88 (78%) died from nonsurvivable TBI or brain death. The difference in mean ICP between those with a fatal outcome and functional survivors was only significant for the first 168 hours after injury (all p < 0.05). For PRx, those patients with a fatal outcome also had a higher (more impaired) PRx throughout the first 120 hours after injury (all p < 0.05). The separation of ICP and PRx was greatest in the first 72 hours after injury. Mixed models demonstrated that the explanatory power of the PRx decreases over time; therefore, the prognostic weight assigned to PRx should similarly decrease. However, the ability of ICP to predict a fatal outcome remained relatively stable over time. As control of ICP is the central purpose of TBI management, it is likely that some of the information that is reflected in the natural history of ICP changes is no longer apparent because of therapeutic intervention. CONCLUSIONS: We demonstrated the temporal evolution of ICP and PRx and their relationship with fatal outcome, indicating a potential early prognostic and therapeutic window. The combination of dynamic monitoring variables and their time profile improved prediction of outcome. Therefore, time-driven dynamic modelling of outcome in patients with severe TBI may allow for more accurate and clinically useful prediction models. Further research is needed to confirm and expand on these findings.DKM is supported by a Senior Investigator award from the NIHR and a European Union Seventh Framework Program grant (CENTER-TBI; grant no. 602150). PJH is supported by a Research Professorship from the NIHR, the NIHR Cambridge Biomedical Research Centre

    The Dark Side of the Electroweak Phase Transition

    Get PDF
    Recent data from cosmic ray experiments may be explained by a new GeV scale of physics. In addition the fine-tuning of supersymmetric models may be alleviated by new O(GeV) states into which the Higgs boson could decay. The presence of these new, light states can affect early universe cosmology. We explore the consequences of a light (~ GeV) scalar on the electroweak phase transition. We find that trilinear interactions between the light state and the Higgs can allow a first order electroweak phase transition and a Higgs mass consistent with experimental bounds, which may allow electroweak baryogenesis to explain the cosmological baryon asymmetry. We show, within the context of a specific supersymmetric model, how the physics responsible for the first order phase transition may also be responsible for the recent cosmic ray excesses of PAMELA, FERMI etc. We consider the production of gravity waves from this transition and the possible detectability at LISA and BBO
    • 

    corecore