20 research outputs found

    Maximum Likelihood Methods for Inverse Learning of Optimal Controllers

    Full text link
    This paper presents a framework for inverse learning of objective functions for constrained optimal control problems, which is based on the Karush-Kuhn-Tucker (KKT) conditions. We discuss three variants corresponding to different model assumptions and computational complexities. The first method uses a convex relaxation of the KKT conditions and serves as the benchmark. The main contribution of this paper is the proposition of two learning methods that combine the KKT conditions with maximum likelihood estimation. The key benefit of this combination is the systematic treatment of constraints for learning from noisy data with a branch-and-bound algorithm using likelihood arguments. This paper discusses theoretic properties of the learning methods and presents simulation results that highlight the advantages of using the maximum likelihood formulation for learning objective functions.Comment: 21st IFAC World Congres

    Constrained Inverse Optimal Control with Application to a Human Manipulation Task

    Full text link
    This paper presents an inverse optimal control methodology and its application to training a predictive model of human motor control from a manipulation task. It introduces a convex formulation for learning both objective function and constraints of an infinite-horizon constrained optimal control problem with nonlinear system dynamics. The inverse approach utilizes Bellman's principle of optimality to formulate the infinite-horizon optimal control problem as a shortest path problem and Lagrange multipliers to identify constraints. We highlight the key benefit of using the shortest path formulation, i.e., the possibility of training the predictive model with short and selected trajectory segments. The method is applied to training a predictive model of movements of a human subject from a manipulation task. The study indicates that individual human movements can be predicted with low error using an infinite-horizon optimal control problem with constraints on shoulder movement

    Real-to-Sim: Deep Learning with Auto-Tuning to Predict Residual Errors using Sparse Data

    Full text link
    Achieving highly accurate kinematic or simulator models that are close to the real robot can facilitate model-based controls (e.g., model predictive control or linear-quadradic regulators), model-based trajectory planning (e.g., trajectory optimization), and decrease the amount of learning time necessary for reinforcement learning methods. Thus, the objective of this work is to learn the residual errors between a kinematic and/or simulator model and the real robot. This is achieved using auto-tuning and neural networks, where the parameters of a neural network are updated using an auto-tuning method that applies equations from an Unscented Kalman Filter (UKF) formulation. Using this method, we model these residual errors with only small amounts of data - a necessity as we improve the simulator/kinematic model by learning directly from hardware operation. We demonstrate our method on robotic hardware (e.g., manipulator arm), and show that with the learned residual errors, we can further close the reality gap between kinematic models, simulations, and the real robot

    Clinical and virological characteristics of hospitalised COVID-19 patients in a German tertiary care centre during the first wave of the SARS-CoV-2 pandemic: a prospective observational study

    Get PDF
    Purpose: Adequate patient allocation is pivotal for optimal resource management in strained healthcare systems, and requires detailed knowledge of clinical and virological disease trajectories. The purpose of this work was to identify risk factors associated with need for invasive mechanical ventilation (IMV), to analyse viral kinetics in patients with and without IMV and to provide a comprehensive description of clinical course. Methods: A cohort of 168 hospitalised adult COVID-19 patients enrolled in a prospective observational study at a large European tertiary care centre was analysed. Results: Forty-four per cent (71/161) of patients required invasive mechanical ventilation (IMV). Shorter duration of symptoms before admission (aOR 1.22 per day less, 95% CI 1.10-1.37, p < 0.01) and history of hypertension (aOR 5.55, 95% CI 2.00-16.82, p < 0.01) were associated with need for IMV. Patients on IMV had higher maximal concentrations, slower decline rates, and longer shedding of SARS-CoV-2 than non-IMV patients (33 days, IQR 26-46.75, vs 18 days, IQR 16-46.75, respectively, p < 0.01). Median duration of hospitalisation was 9 days (IQR 6-15.5) for non-IMV and 49.5 days (IQR 36.8-82.5) for IMV patients. Conclusions: Our results indicate a short duration of symptoms before admission as a risk factor for severe disease that merits further investigation and different viral load kinetics in severely affected patients. Median duration of hospitalisation of IMV patients was longer than described for acute respiratory distress syndrome unrelated to COVID-19

    A User Comfort Model and Index Policy for Personalizing Discrete Controller Decisions

    No full text
    User feedback allows for tailoring system operation to ensure individual user satisfaction. A major challenge in personalized decision-making is the systematic construction of a user model during operation while maintaining control performance. This paper presents both an index-based control policy to smartly collect and process user feedback and a user comfort model in the form of a Markov decision process with a priori unknown user-specific state transition probabilities. The control policy utilizes explicit user feedback to optimize a reward measure reflecting user comfort and addresses the exploration-exploitation trade-off in a multi-armed bandit framework. The proposed approach combines restless bandits and upper confidence bound algorithms. It introduces an exploration term into the restless bandit formulation, utilizes user feedback to identify the user model, and is shown to be indexable. We demonstrate its capabilities with a simulation for learning a user’s trade-off between comfort and energy usage

    Maximum Likelihood Methods for Inverse Learning of Optimal Controllers

    No full text
    This paper presents a framework for inverse learning of objective functions for constrained optimal control problems, which is based on the Karush-Kuhn-Tucker (KKT) conditions. We discuss three variants corresponding to different model assumptions and computational complexities. The first method uses a convex relaxation of the KKT conditions and serves as the benchmark. The main contribution of this paper is the proposition of two learning methods that combine the KKT conditions with maximum likelihood estimation. The key benefit of this combination is the systematic treatment of constraints for learning from noisy data with a branch-and-bound algorithm using likelihood arguments. This paper discusses theoretic properties of the learning methods and presents simulation results that highlight the advantages of using the maximum likelihood formulation for learning objective functions.ISSN:2405-896

    Constrained Inverse Optimal Control With Application to a Human Manipulation Task

    No full text
    This brief presents an inverse optimal control methodology and its application to training a predictive model of human motor control from a manipulation task. It introduces a convex formulation for learning both objective function and constraints of an infinite-horizon constrained optimal control problem with nonlinear system dynamics. The inverse approach utilizes Bellman's principle of optimality to formulate the infinite-horizon optimal control problem as a shortest path problem and the Lagrange multipliers to identify constraints. We highlight the key benefit of using the shortest path formulation, i.e., the possibility of training the predictive model with short and selected trajectory segments. The method is applied to training a predictive model of movements of a human subject from a manipulation task. The study indicates that individual human movements can be predicted with low error using an infinite-horizon optimal control problem with constraints on the shoulder movement.ISSN:1063-6536ISSN:1558-086

    Robust Design of Adaptive Output Feedback Controllers for Direct Feedthrough Systems

    No full text
    ISSN:0731-5090ISSN:1533-388
    corecore