77 research outputs found

    Characterization of the cells in repair tissue following autologous chondrocyte implantation in mankind: a novel report of two cases

    Get PDF
    AIM: Autologous chondrocyte implantation (ACI) is used worldwide for the treatment of cartilage defects. This study has aimed to assess for the first time the cells that are contained within human ACI repair tissues several years post-treatment. We have compared the phenotypic properties of cells from within the ACI repair with adjacent chondrocytes and subchondral bone-derived mesenchymal stromal/stem cells (MSCs). MATERIALS & METHODS: Two patients undergoing arthroplasty of their ACI-treated joint were investigated. Tissue and cells were isolated from the repair site, adjacent macroscopically normal cartilage and MSCs from the subchondral bone were characterized for their growth kinetics, morphology, immunoprofile and differentiation capacity. RESULTS: ACI repair tissue appeared fibrocartilaginous, and ACI repair cells were heterogeneous in morphology and size when freshly isolated, becoming more homogeneous, resembling chondrocytes from adjacent cartilage, after culture expansion. The same weight of ACI repair tissue resulted in less cells than macroscopically normal cartilage. During expansion, ACI repair cells proliferated faster than MSCs but slower than chondrocytes. ACI repair cell immunoprofiles resembled chondrocytes, but their differentiation capacity matched MSCs. CONCLUSION: This novel report demonstrates that human ACI repair cell phenotypes resemble both chondrocytes and MSCs but at different stages of their isolation and expansion in vitro

    Isolation and characterisation of mesenchymal stem cells from different regions of the human umbilical cord.

    Get PDF
    Umbilical cords as a source of stem cells are of increasing interest for cell therapies as they present little ethical consideration and are reported to contain immune privileged cells which may be suitable for allogeneic based therapies. Mesenchymal stem cells (MSCs) sourced from several different cord regions, including artery, vein, cord lining, and Wharton's jelly, are described in the literature. However, no one study has yet isolated and characterised MSCs from all regions of the same cord to determine the most suitable cells for cell based therapeutics

    Chondrogenic Potency Analyses of Donor-Matched Chondrocytes and Mesenchymal Stem Cells Derived from Bone Marrow, Infrapatellar Fat Pad, and Subcutaneous Fat.

    Get PDF
    Autologous chondrocyte implantation (ACI) is a cell-based therapy that has been used clinically for over 20 years to treat cartilage injuries more efficiently in order to negate or delay the need for joint replacement surgery. In this time, very little has changed in the ACI procedure, but now many centres are considering or using alternative cell sources for cartilage repair, in particular mesenchymal stem cells (MSCs). In this study, we have tested the chondrogenic potential of donor-matched MSCs derived from bone marrow (BM), infrapatellar fat pad (FP), and subcutaneous fat (SCF), compared to chondrocytes. We have confirmed that there is a chondrogenic potency hierarchy ranging across these cell types, with the most potent being chondrocytes, followed by FP-MSCs, BM-MSCs, and lastly SCF-MSCs. We have also examined gene expression and surface marker profiles in a predictive model to identify cells with enhanced chondrogenic potential. In doing so, we have shown that Sox-9, Alk-1, and Coll X expressions, as well as immunopositivity for CD49c and CD39, have predictive value for all of the cell types tested in indicating chondrogenic potency. The findings from this study have significant clinical implications for the refinement and development of novel cell-based cartilage repair strategies

    Magnetic Resonance Imaging Parameters at 1 Year Correlate With Clinical Outcomes Up to 17 Years After Autologous Chondrocyte Implantation

    Get PDF
    Background: The ability to predict the long-term success of surgical treatment in orthopaedics is invaluable, particularly in clinical trials. The quality of repair tissue formed 1 year after autologous chondrocyte implantation (ACI) in the knee was analyzed and compared with clinical outcomes over time. Hypothesis: Better quality repair tissue and a better appearance on magnetic resonance imaging (MRI) 1 year after ACI lead to improved longer-term clinical outcomes. Study Design: Cohort study; Level of evidence, 3. Methods: Repair tissue quality was assessed using either MRI (11.5 ± 1.4 [n = 91] or 39.2 ± 18.5 [n = 76] months after ACI) or histology (16.3 ± 11.0 months [n = 102] after ACI). MRI scans were scored using the whole-organ magnetic resonance imaging score (WORMS) and the magnetic resonance observation of cartilage repair tissue (MOCART) score, with additional assessments of subchondral bone marrow and cysts. Histology of repair tissue was performed using the Oswestry cartilage score (OsScore) and the International Cartilage Repair Society (ICRS) II score. Clinical outcomes were assessed using the modified Lysholm score preoperatively, at the time of MRI or biopsy, and at a mean 8.4 ± 3.7 years (maximum, 17.8 years) after ACI. Results: At 12 months, the total MOCART score and some of its individual parameters correlated significantly with clinical outcomes. The degree of defect fill, overall signal intensity, and surface of repair tissue at 12 months also significantly correlated with longer-term outcomes. The presence of cysts or effusion (WORMS) significantly correlated with clinical outcomes at 12 months, while the presence of synovial cysts/bursae preoperatively or the absence of loose bodies at 12 months correlated significantly with long-term clinical outcomes. Thirty percent of repair tissue biopsies contained hyaline cartilage, 65% contained fibrocartilage, and 5% contained fibrous tissue. Despite no correlation between the histological scores and clinical outcomes at the time of biopsy, a lack of hyaline cartilage or poor basal integration was associated with increased pain; adhesions visible on MRI also correlated with significantly better histological scores. Conclusion: These results demonstrate that MRI at 12 months can predict longer-term clinical outcomes after ACI. Further investigation regarding the presence of cysts, effusion, and adhesions and their relationship with histological and clinical outcomes may yield new insights into the mechanisms of cartilage repair and potential sources of pain

    Ageing in the musculoskeletal system

    Get PDF
    The extent of ageing in the musculoskeletal system during the life course affects the quality and length of life. Loss of bone, degraded articular cartilage, and degenerate, narrowed intervertebral discs are primary features of an ageing skeleton, and together they contribute to pain and loss of mobility. This review covers the cellular constituents that make up some key components of the musculoskeletal system and summarizes discussion from the 2015 Aarhus Regenerative Orthopaedic Symposium (AROS) (Regeneration in the Ageing Population) about how each particular cell type alters within the ageing skeletal microenvironment

    A comprehensive characterisation of large-scale expanded human bone marrow and umbilical cord mesenchymal stem cells.

    Get PDF
    BACKGROUND: The manufacture of mesenchymal stem/stromal cells (MSCs) for clinical use needs to be cost effective, safe and scaled up. Current methods of expansion on tissue culture plastic are labour-intensive and involve several 'open' procedures. We have used the closed Quantum® hollow fibre bioreactor to expand four cultures each of MSCs derived from bone marrow (BM) and, for the first time, umbilical cords (UCs) and assessed extensive characterisation profiles for each, compared to parallel cultures grown on tissue culture plastic. METHODS: Bone marrow aspirate was directly loaded into the Quantum®, and cells were harvested and characterised at passage (P) 0. Bone marrow cells were re-seeded into the Quantum®, harvested and further characterised at P1. UC-MSCs were isolated enzymatically and cultured once on tissue culture plastic, before loading cells into the Quantum®, harvesting and characterising at P1. Quantum®-derived cultures were phenotyped in terms of immunoprofile, tri-lineage differentiation, response to inflammatory stimulus and telomere length, as were parallel cultures expanded on tissue culture plastic. RESULTS: Bone marrow cell harvests from the Quantum® were 23.1 ± 16.2 × 106 in 14 ± 2 days (P0) and 131 ± 84 × 106 BM-MSCs in 13 ± 1 days (P1), whereas UC-MSC harvests from the Quantum® were 168 ± 52 × 106 UC-MSCs after 7 ± 2 days (P1). Quantum®- and tissue culture plastic-expanded cultures at P1 adhered to criteria for MSCs in terms of cell surface markers, multipotency and plastic adherence, whereas the integrins, CD29, CD49c and CD51/61, were found to be elevated on Quantum®-expanded BM-MSCs. Rapid culture expansion in the Quantum® did not cause shortened telomeres when compared to cultures on tissue culture plastic. Immunomodulatory gene expression was variable between donors but showed that all MSCs upregulated indoleamine 2, 3-dioxygenase (IDO). CONCLUSIONS: The results presented here demonstrate that the Quantum® can be used to expand large numbers of MSCs from bone marrow and umbilical cord tissues for next-generation large-scale manufacturing, without impacting on many of the properties that are characteristic of MSCs or potentially therapeutic. Using the Quantum®, we can obtain multiple MSC doses from a single manufacturing run to treat many patients. Together, our findings support the development of cheaper cell-based treatments

    Human Articular Chondrocytes Retain Their Phenotype in Sustained Hypoxia While Normoxia Promotes Their Immunomodulatory Potential.

    Get PDF
    Objective To assess the phenotype of human articular chondrocytes cultured in normoxia (21% O2) or continuous hypoxia (2% O2). Design Chondrocytes were extracted from patients undergoing total knee replacement ( n = 5) and cultured in ~21% (normoxic chondrocytes, NC) and 2% (hypoxic chondrocytes, HC) oxygen in both monolayer and 3-dimensional (3D) pellet culture and compared with freshly isolated chondrocytes (FC). Cells were assessed by flow cytometry for markers indicative of mesenchymal stromal cells (MSCs), chondrogenic-potency and dedifferentiation. Chondrogenic potency and immunomodulatory gene expression was assessed in NC and HC by reverse transcription quantitative polymerase chain reaction. Immunohistochemistry was used to assess collagen II production following 3D pellet culture. Results NC were positive (>97%, n = 5) for MSC markers, CD73, CD90, and CD105, while HC demonstrated 60%) compared with HC and FC in which production was <2%. Hypoxic conditions upregulated expression of SOX9, frizzled-related protein ( FRZB), fibroblast growth factor receptor 3 ( FGFR3), and collagen type II ( COL2A1) and downregulated activin receptor-like kinase 1 ( ALK1) in 3 out of 4 patients compared with normoxic conditions for monolayer cells. Conclusions Hypoxic conditions encourage retention of a chondrogenic phenotype with some immunomodulatory potential, whereas normoxia promotes dedifferentiation of chondrocytes toward an MSC phenotype with loss of chondrogenic potency but enhanced immunomodulatory capacity

    Extracellular Vesicle Depletion Protocols of Foetal Bovine Serum Influence Umbilical Cord Mesenchymal Stromal Cell Phenotype, Immunomodulation, and Particle Release

    Get PDF
    The immunomodulatory properties of MSCs can be recreated using their extracellular vesicles (EVs). Yet, the true capabilities of the MSC EVs cannot be distinguished from contaminating bovine EVs and protein derived from supplemental foetal bovine serum (FBS). FBS EV depletion protocols can minimise this, but vary in terms of depletion efficiency, which can negatively impact the cell phenotype. We explore the impact of FBS EV depletion strategies, including ultracentrifugation, ultrafiltration, and serum-free, on umbilical cord MSC characteristics. Whilst a greater depletion efficiency, seen in the ultrafiltration and serum-free strategies, did not impact the MSC markers or viability, the MSCs did become more fibroblastic, had slower proliferation, and showed inferior immunomodulatory capabilities. Upon MSC EV enrichment, more particles, with a greater particle/protein ratio, were isolated upon increasing the FBS depletion efficiency, except for serum-free, which showed a decreased particle number. Whilst all conditions showed the presence of EV-associated markers (CD9, CD63, and CD81), serum-free was shown to represent a higher proportion of these markers when normalised by total protein. Thus, we caution MSC EV researchers on the use of highly efficient EV depletion protocols, showing that it can impact the MSC phenotype, including their immunomodulatory properties, and stress the importance of testing in consideration to downstream objectives

    The synovial fluid from patients with focal cartilage defects contains mesenchymal stem/stromal cells and macrophages with pro- and anti-inflammatory phenotypes

    Get PDF
    Objective The synovial fluid (SF) of patients with focal cartilage defects contains a population of poorly characterised cells that could have pathophysiological implications in early osteoarthritis and joint tissue repair. We have examined the cells within SF of such joints by determining their chondrogenic capacity following culture expansion and establishing the phenotypes of the macrophage subsets in non-cultured cells. Design Knee SF cells were obtained from 21 patients receiving cell therapy to treat a focal cartilage defect. Cell surface immunoprofiling for stem cell and putative chondrogenic markers, and the expression analysis of key chondrogenic and hypertrophic genes were conducted on culture-expanded SF cells prior to chondrogenesis. Flow cytometry was also used to determine the macrophage subsets in freshly isolated SF cells. Results Immunoprofiling revealed positivity for the monocyte/macrophage marker (CD14), the haematopoietic/endothelial cell marker (CD34) and mesenchymal stem/stromal cell markers (CD73, CD90, CD105) on culture expanded cells. We found strong correlations between the presence of CD14 and the vascular cell adhesion marker, CD106 (r=0.81, p=0.003). Collagen type II expression after culture expansion positively correlated with GAG production (r=0.73, p=0.006), whereas CD90 (r=-0.6, p=0.03) and CD105 (r=-0.55, p=0.04) immunopositivity were inversely related to GAG production. Freshly isolated SF cells were positive for both pro- (CD86) and anti-inflammatory markers (CD163 and CD206). Conclusions The cellular content of the SF from patients with focal cartilage injuries is comprised of a heterogeneous population of reparative and inflammatory cells. Additional investigations are needed to understand the role played by these cells in the attempted repair and inflammatory process in diseased joints
    • …
    corecore