5,457 research outputs found
Breakdown of scale-invariance in the coarsening of phase-separating binary fluids
We present evidence, based on lattice Boltzmann simulations, to show that the
coarsening of the domains in phase separating binary fluids is not a
scale-invariant process. Moreover we emphasise that the pathway by which phase
separation occurs depends strongly on the relation between diffusive and
hydrodynamic time scales.Comment: 4 pages, Latex, 4 eps Figures included. (higher quality Figures can
be obtained from [email protected]
Estimation of the hydraulic parameters of unsaturated samples by electrical resistivity tomography
In situ and laboratory experiments have shown that electrical resistivity tomography (ERT) is an effective tool to image transient phenomena in soils. However, its application in quantifying soil hydraulic parameters has been limited. In this study, experiments of water inflow in unsaturated soil samples were conducted in an oedometer equipped to perform three-dimensional electrical measurements. Reconstructions of the electrical conductivity at different times confirmed the usefulness of ERT for monitoring the evolution of water content. The tomographic reconstructions were subsequently used in conjunction with a finite-element simulation to infer the water retention curve and the unsaturated hydraulic conductivity. The parameters estimated with ERT agree satisfactorily with those determined using established techniques, hence the proposed approach shows good potential for relatively fast characterisations. Similar experiments could be carried out on site to study the hydraulic behaviour of the entire soil deposi
STITCHER: Dynamic assembly of likely amyloid and prion β-structures from secondary structure predictions
The supersecondary structure of amyloids and prions, proteins of intense clinical and biological interest, are difficult to determine by standard experimental or computational means. In addition, significant conformational heterogeneity is known or suspected to exist in many amyloid fibrils. Previous work has demonstrated that probability-based prediction of discrete β-strand pairs can offer insight into these structures. Here, we devise a system of energetic rules that can be used to dynamically assemble these discrete β-strand pairs into complete amyloid β-structures. The STITCHER algorithm progressively ‘stitches’ strand-pairs into full β-sheets based on a novel free-energy model, incorporating experimentally observed amino-acid side-chain stacking contributions, entropic estimates, and steric restrictions for amyloidal parallel β-sheet construction. A dynamic program computes the top 50 structures and returns both the highest scoring structure and a consensus structure taken by polling this list for common discrete elements. Putative structural heterogeneity can be inferred from sequence regions that compose poorly. Predictions show agreement with experimental models of Alzheimer's amyloid beta peptide and the Podospora anserina Het-s prion. Predictions of the HET-s homolog HET-S also reflect experimental observations of poor amyloid formation. We put forward predicted structures for the yeast prion Sup35, suggesting N-terminal structural stability enabled by tyrosine ladders, and C-terminal heterogeneity. Predictions for the Rnq1 prion and alpha-synuclein are also given, identifying a similar mix of homogenous and heterogeneous secondary structure elements. STITCHER provides novel insight into the energetic basis of amyloid structure, provides accurate structure predictions, and can help guide future experimental studies. Proteins 2011
Well-Tempered Metadynamics Simulations Predict the Structural and Dynamic Properties of a Chiral 24-Atom Macrocycle in Solution
Inspired by therapeutic potential, the molecular engineering of macrocycles is garnering increased interest. Exercising control with design, however, is challenging due to the dynamic behavior that these molecules must demonstrate in order to be bioactive. Herein, the value of metadynamics simulations is demonstrated: the free-energy surfaces calculated reveal folded and flattened accessible conformations of a 24-atom macrocycle separated by barriers of c.a. 6 kT under experimentally relevant conditions. Simulations reveal that the dominant conformer is folded-an observation consistent with a solid-state structure determined by X-ray crystallography and a network of rOes established by 1H NMR. Simulations suggest that the macrocycle exists as a rapidly interconverting pair of enantiomeric, folded structures. Experimentally, 1H NMR shows a single species at room temperature. However, at lower temperature, the interconversion rate between these enantiomers becomes markedly slower, resulting in the decoalescence of enantiotopic methylene protons into diastereotopic, distinguishable resonances due to the persistence of conformational chirality. The emergence of conformational chirality provides critical experimental support for the simulations, revealing the dynamic nature of the scaffold-a trait deemed critical for oral bioactivity
On the Behavior of the Effective QCD Coupling alpha_tau(s) at Low Scales
The hadronic decays of the tau lepton can be used to determine the effective
charge alpha_tau(m^2_tau') for a hypothetical tau-lepton with mass in the range
0 < m_tau' < m_tau. This definition provides a fundamental definition of the
QCD coupling at low mass scales. We study the behavior of alpha_tau at low mass
scales directly from first principles and without any renormalization-scheme
dependence by looking at the experimental data from the OPAL Collaboration. The
results are consistent with the freezing of the physical coupling at mass
scales s = m^2_tau' of order 1 GeV^2 with a magnitude alpha_tau ~ 0.9 +/- 0.1.Comment: 15 pages, 4 figures, submitted to Physical Review D, added
references, some text added, no results nor figures change
Discovery of the 2010 Eruption and the Pre-Eruption Light Curve for Recurrent Nova U Scorpii
We report the discovery by B. G. Harris and S. Dvorak on JD 2455224.9385
(2010 Jan 28.4385 UT) of the predicted eruption of the recurrent nova U Scorpii
(U Sco). We also report on 815 magnitudes (and 16 useful limits) on the
pre-eruption light curve in the UBVRI and Sloan r' and i' bands from 2000.4 up
to 9 hours before the peak of the January 2010 eruption. We found no
significant long-term variations, though we did find frequent fast variations
(flickering) with amplitudes up to 0.4 mag. We show that U Sco did not have any
rises or dips with amplitude greater than 0.2 mag on timescales from one day to
one year before the eruption. We find that the peak of this eruption occurred
at JD 2455224.69+-0.07 and the start of the rise was at JD 2455224.32+-0.12.
From our analysis of the average B-band flux between eruptions, we find that
the total mass accreted between eruptions is consistent with being a constant,
in agreement with a strong prediction of nova trigger theory. The date of the
next eruption can be anticipated with an accuracy of +-5 months by following
the average B-band magnitudes for the next ~10 years, although at this time we
can only predict that the next eruption will be in the year 2020+-2.Comment: Astronomical Journal submitted, 36 pages, 3 figures, full table
Design and Process Development for Smart Phone Medication Dosing Support System and Educational Platform in HIV/Aids-TB Programs in Zambia
The widespread adoption of cell phones and other mobile platforms represents an opportunity to extend the benefits of personalized, point-of-care, healthcare applications to providers and patients in the developing world. However, the challenges facing the effective deployment of mobile health care applications are complex, and thus require a scalable, flexible, and configurable approach. A service-oriented-architecture-based conceptual framework is proposed to address the challenges of developing and deploying mobile health care applications. A particular emphasis of the framework is a service-agent-modeling-based composite process-personalization support that is needed to support the diverse and adaptable needs of the users
Models to represent linguistic linked data
As the interest of the Semantic Web and computational linguistics communities in linguistic linked data (LLD) keeps increasing and the number of contributions that dwell on LLD rapidly grows, scholars (and linguists in particular) interested in the development of LLD resources sometimes find it difficult to determine which mechanism is suitable for their needs and which challenges have already been addressed. This review seeks to present the state of the art on the models, ontologies and their extensions to represent language resources as LLD by focusing on the nature of the linguistic content they aim to encode. Four basic groups of models are distinguished in this work: models to represent the main elements of lexical resources (group 1), vocabularies developed as extensions to models in group 1 and ontologies that provide more granularity on specific levels of linguistic analysis (group 2), catalogues of linguistic data categories (group 3) and other models such as corpora models or service-oriented ones (group 4). Contributions encompassed in these four groups are described, highlighting their reuse by the community and the modelling challenges that are still to be faced
- …