185 research outputs found

    Fast, multi-band photon detectors based on quantum well devices for beam-monitoring in new generation light sources

    Get PDF
    In order to monitor the photon-beam position for both diagnostics and calibration purposes, we have investigated the possibility to use InGaAs/InAlAs Quantum Well (QW) devices as position-sensitive photon detectors for Free-Electron Laser (FEL) or Synchrotron Radiation (SR). Owing to their direct, low-energy band gap and high electron mobility, such QW devices may be used also at Room Temperature (RT) as fast multi-band sensors for photons ranging from visible light to hard X-rays. Moreover, internal charge-amplification mechanism can be applied for very low signal levels, while the high carrier mobility allows the design of very fast photon detectors with sub-nanosecond response times. Segmented QW sensors have been preliminary tested with 100-fs-wide 400 nm laser pulses and X-ray SR. The reported results indicate that these devices respond with 100 ps rise-times to such ultra-fast laser pulses. Besides, linear scan on the back-pixelated device has shown that these detectors are sensitive to the position of each ultrashort beam bunch

    Relationship between casting modulus and grain size in cast A356 aluminium alloys

    Get PDF
    Microstructure of Al-Si alloy castings depends most generally on melt preparation and on the cooling rate imposed by the thermal modulus of the component. In the case of Al-Si alloys, emphasis is put during melt preparation on refinement of pro-eutectic (Al) grains and on modification of the Al-Si eutectic. Thermal analysis has been used since long to check melt preparation before casting, i.e. by analysis of the cooling curve during solidification of a sample cast in an instrumented cup. The conclusions drawn from such analysis are however valid for the particular cooling conditions of the cups. It thus appeared of interest to investigate how these conclusions could extrapolate to predict microstructure in complicated cast parts showing local changes in the solidification conditions. For that purpose, thermal analysis cups and instrumented sand and die castings with different thermal moduli and thus cooling rates have been made, and the whole set of cooling curves thus recorded has been analysed. A statistical analysis of the characteristic features of the cooling curves related to grain refinement in sand and die castings allowed determining the most significant parameters and expressing the cube of grain size as a polynomial of these parameters. After introduction of a further parameter quantifying melt refining an excellent correlation, with a R2 factor of 0.99 was obtained

    Energetic outer radiation belt electron precipitation during recurrent solar activity

    Get PDF
    Transmissions from three U.S. VLF (very low frequency) transmitters were received at Churchill, Canada, during an event study in May to November, 2007. This period spans four cycles of recurrent geomagnetic activity spaced similar to 27 days apart, with daily Sigma Kp reaching similar to 30 at the peaks of the disturbances. The difference in the amplitude of the signals received during the day and during the night varied systematically with geomagnetic activity, and was used here as a proxy for ionization changes caused by energetic electron precipitation. For the most intense of the recurrent geomagnetic storms there was evidence of electron precipitation from 3 300 keV and similar to 1 MeV trapped electrons, and also consistent with the daily average ULF (ultralow frequency) Pc1-2 power (L = 3.9) from Lucky Lake, Canada, which was elevated during the similar to 1 MeV electron precipitation period. This suggests that Pc1-2 waves may play a role in outer radiation belt loss processes during this interval. We show that the > 300 keV trapped electron flux from POES is a reasonable proxy for electron precipitation during recurrent high-speed solar wind streams, although it did not describe all of the variability that occurred. While energetic electron precipitation can be described through a proxy such as Kp or Dst, careful incorporation of time delays for different electron energies must be included. Dst was found to be the most accurate proxy for electron precipitation during the weak recurrent-activity period studied

    Diffraction enhanced X-ray imaging

    Get PDF
    Abstract. Diffraction enhanced imaging is a new x-ray radiographic imaging modality using monochromatic x-rays from a synchrotron which produces images of thick absorbing objects that are almost completely free of scatter. They show dramatically improved contrast over standard imaging applied to the same phantom. The contrast is based not only on attenuation but also the refraction and diffraction properties of the sample. This imaging method may improve image quality for medical applications, industrial radiography for non-destructive testing and x-ray computed tomography

    Real-time imaging of density ducts between the plasmasphere and ionosphere

    Get PDF
    Ionization of the Earth's atmosphere by sunlight forms a complex, multilayered plasma environment within the Earth's magnetosphere, the innermost layers being the ionosphere and plasmasphere. The plasmasphere is believed to be embedded with cylindrical density structures (ducts) aligned along the Earth's magnetic field, but direct evidence for these remains scarce. Here we report the first direct wide-angle observation of an extensive array of field-aligned ducts bridging the upper ionosphere and inner plasmasphere, using a novel ground-based imaging technique. We establish their heights and motions by feature tracking and parallax analysis. The structures are strikingly organized, appearing as regularly spaced, alternating tubes of overdensities and underdensities strongly aligned with the Earth's magnetic field. These findings represent the first direct visual evidence for the existence of such structures

    Real-time imaging of density ducts between the plasmasphere and ionosphere

    Get PDF
    Ionization of the Earth's atmosphere by sunlight forms a complex, multilayered plasma environment within the Earth's magnetosphere, the innermost layers being the ionosphere and plasmasphere. The plasmasphere is believed to be embedded with cylindrical density structures (ducts) aligned along the Earth's magnetic field, but direct evidence for these remains scarce. Here we report the first direct wide-angle observation of an extensive array of field-aligned ducts bridging the upper ionosphere and inner plasmasphere, using a novel ground-based imaging technique. We establish their heights and motions by feature tracking and parallax analysis. The structures are strikingly organized, appearing as regularly spaced, alternating tubes of overdensities and underdensities strongly aligned with the Earth's magnetic field. These findings represent the first direct visual evidence for the existence of such structures
    corecore