27 research outputs found

    Asthma exacerbations in a subtropical area and the role of respiratory viruses:a cross-sectional study

    Get PDF
    Background: Multiple factors are involved in asthma exacerbations, including environmental exposure and viral infections. We aimed to assess the association between severe asthma exacerbations, acute respiratory viral infections and other potential risk factors. Methods: Asthmatic children aged 4-14 years were enrolled for a period of 12 months and divided into two groups: those with exacerbated asthma (group 1) and non-exacerbated asthma (group 2). Clinical data were obtained and nasopharyngeal samples were collected through nasopharyngeal aspirate or swab and analysed via indirect fluorescent immunoassays to detect influenza A and B viruses, parainfluenza 1-3, adenovirus and respiratory syncytial virus. Rhinovirus was detected via molecular assays. Potential risk factors for asthma exacerbation were identified in univariate and multivariate analyses. Results: In 153 children (group 1: 92; group 2: 61), median age 7 and 8 years, respectively, the rate of virus detection was 87.7%. There was no difference between groups regarding the frequency of virus detection (p = 0.68); however, group 1 showed a lower frequency (19.2%) of inhaled corticosteroid use (91.4%, p <0.01) and evidence of inadequate disease control. In the multivariate analysis, the occurrence of three or more visits to the emergency room in the past 12 months (IRR = 1.40; p = 0.04) and nonadherence to inhaled corticosteroid (IRR = 4.87; p <0.01) were the only factors associated with exacerbation. Conclusion: Our results suggest an association between asthma exacerbations, poor disease control and nonadherence to asthma medication, suggesting that viruses may not be the only culprits for asthma exacerbations in this population

    Prevalence of Noroviruses and Sapoviruses in Swine of Various Ages Determined by Reverse Transcription-PCR and Microwell Hybridization Assays

    No full text
    Noroviruses (NoVs) and sapoviruses (SaVs) are emerging enteric pathogens that cause diarrhea in humans and animals. Porcine genogroup II (GII) NoVs replicate in pigs, but their pathogenesis is undefined. The porcine SaV/GIII/Cowden/80/US strain causes diarrhea and intestinal lesions in pigs. Recently, genetically diverse porcine NoVs (genotypes 11, 18, and 19 within GII) and SaVs comprising at least two genogroups (GIII and GVI?/JJ681-like) and two unclassified strains (G?/QW19 and G?/LL26) were identified; however, their prevalence has not been reported. To investigate the prevalence of porcine NoVs and SaVs, 621 fecal samples were collected from swine of various ages from seven swine farms and one slaughterhouse in three states in the United States. Fecal samples were tested by reverse transcription-PCR and microwell hybridization assays with porcine NoV- and SaV-specific primers and probes, respectively. Porcine GII NoVs were detected exclusively from finisher pigs with an overall prevalence of 20%. Porcine GIII SaVs were detected in 62% of pigs, with the highest prevalence in postweaning pigs and lowest in nursing pigs. Porcine GVI?/JJ681-like SaVs and the G?/QW19-like SaVs were detected infrequently in pigs. The G?/LL26-like SaVs were detected mainly in younger pigs. Because some porcine NoVs and SaVs are genetically or antigenically related to human strains and recombinants within NoVs or SaVs occur for human and pig strains, the high prevalence and subclinical infection rate of these viruses in pigs raise questions of whether pigs may be reservoirs for human strains or for the emergence of new human and porcine recombinants

    Monitoring the circulation of rotavirus among children after the introduction of the RotarixTM vaccine in Goiânia, Brazil

    No full text
    The epidemiological features of rotavirus A (RVA) infection differ between children from developing and developed countries which could result in differences in vaccine efficacy around the world. To evaluate the impact of RotarixTM on RVA prevalence, we monitored RVA genotypes circulating in Goiânia by monitoring virus in faecal samples from children that had or had not been previously vaccinated. From February-November of 2008, 220 faecal samples were collected from children in seven day-care centres. RVA detection was performed by two methodologies and the results were confirmed by polyacrylamide gel electrophoresis. From the 220 samples, eight were RVA-positive (3.6%) and five were from children that had received either one or two doses of the vaccine. All positive samples were collected from children with diarrhoea during August and September. Genotyping of the RVA characterised five of the viral samples as genotype G2P[4] and one as G8P[4], suggesting that G2P[4] was the predominant circulating genotype in Goiânia during the study. The fact that vaccinated children were also infected by RVA suggests that the vaccine does not fully protect against infection by the G2[P4] RVA genotype

    Pathogenesis of a Genogroup II Human Norovirus in Gnotobiotic Pigs

    No full text
    We evaluated the gnotobiotic (Gn) pig as a model to study the pathogenesis of human norovirus (HuNoV) and to determine the target cells for viral replication. Sixty-five Gn pigs were inoculated with fecal filtrates of the NoV/GII/4/HS66/2001/US strain or with pig-passaged intestinal contents (IC) and euthanized acutely (n = 43) or after convalescence (n = 22). Age-matched Gn piglets (n = 14) served as mock-inoculated controls. Seventy-four percent (48/65) of the inoculated animals developed mild diarrhea compared to 0 of 14 controls. Pigs from postinoculation days (PID) 1 to 4 tested positive for HuNoV by reverse transcription-PCR of rectal swab fluids (29/65) and IC (9/43) and by antigen (Ag) enzyme-linked immunosorbent assay (ELISA) using antiserum to virus-like particles of HuNoV GII/4. No control pigs were positive. Histopathologic examination showed mild lesions in the proximal small intestine of only one pig (1/7). Seroconversion after PID 21 was detected by antibody ELISA in 13 of 22 virus-inoculated pigs (titers, 1:20 to 1:200) but not in controls. Immunofluorescent microscopy using a monoclonal antibody to HuNoV GII capsid revealed patchy infection of duodenal and jejunal enterocytes of 18 of 31 HuNoV-inoculated pigs with a few stained cells in the ileum and no immunofluorescence (IF) in mock-inoculated controls. Immunofluorescent detection of the viral nonstructural N-terminal protein antigen in enterocytes confirmed translation. Transmission electron microscopy of intestines from HuNoV-inoculated pigs showed disrupted enterocytes, with cytoplasmic membrane vesicles containing calicivirus-like particles of 25 to 40 nm in diameter. In summary, serial passage of HuNoV in pigs, with occurrence of mild diarrhea and shedding, and immunofluorescent detection of the HuNoV structural and nonstructural proteins in enterocytes confirm HuNoV replication in Gn pigs

    Identification of Human Bocavirus type 4 in a child asymptomatic for respiratory tract infection and acute gastroenteritis – Goiânia, Goiás, Brazil

    No full text
    Human Bocavirus (HBoV) has been identified from feces and respiratory samples from cases of both acute gastroenteritis and respiratory illness as well as in asymptomatic individuals.The aim of this study was to detect and characterize HBoV from fecal samples collected from hospitalized children aged less than five years old with no symptoms of respiratory tract infection (RTI) or acute gastroenteritis (AGE). The study involved 119 children and one fecal sample was collected from each participant between 2014 and 2015. HBoV was detected using Nested-PCR, and the viral type identified by genomic sequencing. HBoV-4 was identified from one sample obtained from a hospitalized child with soft tissue tumor of the submandibular region. This is the first report of HBoV-4 identification in Brazil, but we consider that this type may be circulating in the country similar to the other types and new investigations are necessary. Keywords: HBoV-4, Asymptomatic children, Tumor of the submandibular regio
    corecore