83 research outputs found

    Potential of Core-Collapse Supernova Neutrino Detection at JUNO

    Get PDF
    JUNO is an underground neutrino observatory under construction in Jiangmen, China. It uses 20kton liquid scintillator as target, which enables it to detect supernova burst neutrinos of a large statistics for the next galactic core-collapse supernova (CCSN) and also pre-supernova neutrinos from the nearby CCSN progenitors. All flavors of supernova burst neutrinos can be detected by JUNO via several interaction channels, including inverse beta decay, elastic scattering on electron and proton, interactions on C12 nuclei, etc. This retains the possibility for JUNO to reconstruct the energy spectra of supernova burst neutrinos of all flavors. The real time monitoring systems based on FPGA and DAQ are under development in JUNO, which allow prompt alert and trigger-less data acquisition of CCSN events. The alert performances of both monitoring systems have been thoroughly studied using simulations. Moreover, once a CCSN is tagged, the system can give fast characterizations, such as directionality and light curve

    Detection of the Diffuse Supernova Neutrino Background with JUNO

    Get PDF
    As an underground multi-purpose neutrino detector with 20 kton liquid scintillator, Jiangmen Underground Neutrino Observatory (JUNO) is competitive with and complementary to the water-Cherenkov detectors on the search for the diffuse supernova neutrino background (DSNB). Typical supernova models predict 2-4 events per year within the optimal observation window in the JUNO detector. The dominant background is from the neutral-current (NC) interaction of atmospheric neutrinos with 12C nuclei, which surpasses the DSNB by more than one order of magnitude. We evaluated the systematic uncertainty of NC background from the spread of a variety of data-driven models and further developed a method to determine NC background within 15\% with {\it{in}} {\it{situ}} measurements after ten years of running. Besides, the NC-like backgrounds can be effectively suppressed by the intrinsic pulse-shape discrimination (PSD) capabilities of liquid scintillators. In this talk, I will present in detail the improvements on NC background uncertainty evaluation, PSD discriminator development, and finally, the potential of DSNB sensitivity in JUNO

    Real-time Monitoring for the Next Core-Collapse Supernova in JUNO

    Full text link
    Core-collapse supernova (CCSN) is one of the most energetic astrophysical events in the Universe. The early and prompt detection of neutrinos before (pre-SN) and during the SN burst is a unique opportunity to realize the multi-messenger observation of the CCSN events. In this work, we describe the monitoring concept and present the sensitivity of the system to the pre-SN and SN neutrinos at the Jiangmen Underground Neutrino Observatory (JUNO), which is a 20 kton liquid scintillator detector under construction in South China. The real-time monitoring system is designed with both the prompt monitors on the electronic board and online monitors at the data acquisition stage, in order to ensure both the alert speed and alert coverage of progenitor stars. By assuming a false alert rate of 1 per year, this monitoring system can be sensitive to the pre-SN neutrinos up to the distance of about 1.6 (0.9) kpc and SN neutrinos up to about 370 (360) kpc for a progenitor mass of 30M⊙M_{\odot} for the case of normal (inverted) mass ordering. The pointing ability of the CCSN is evaluated by using the accumulated event anisotropy of the inverse beta decay interactions from pre-SN or SN neutrinos, which, along with the early alert, can play important roles for the followup multi-messenger observations of the next Galactic or nearby extragalactic CCSN.Comment: 24 pages, 9 figure

    Enhanced Laser-Induced Breakdown Spectroscopy for Heavy Metal Detection in Agriculture: A Review

    No full text
    Heavy metal pollution in agriculture is a significant problem that endangers human health. Laser-induced breakdown spectroscopy (LIBS) is an emerging technique for material and elemental analysis, especially heavy metals, based on atomic emission spectroscopy. The LIBS technique has been widely used for rapid detection of heavy metals with its advantages of convenient operation, simultaneous detection of multi-elements, wide range of elements, and no requirement for the state and quantity of samples. However, the development of LIBS is limited by its detection sensitivity and limit of detection (LOD). Therefore, in order to improve the detection sensitivity and LOD of LIBS, it is necessary to enhance the LIBS signal to achieve the purpose of detecting heavy metal elements in agriculture. This review mainly introduces the basic instruments and principles of LIBS and summarizes the methods of enhanced LIBS signal detection of heavy metal elements in agriculture over the past 10 years. The three main approaches to enhancing LIBS are sample pretreatment, adding laser pulses, and using auxiliary devices. An enhanced LIBS signal may improve the LOD of heavy metal elements in agriculture and the sensitivity and stability of the LIBS technique. The enhanced LIBS technique will have a broader prospect in agricultural heavy metal monitoring and can provide technical support for developing heavy metal detection instruments

    Retinitis after haematopoietic stem cell transplantation with multiple intraocular viral infections (cytomegalovirus, Epstein‒Barr virus and herpes simplex virus)- a case report

    No full text
    Abstract Background To report a case of retinitis with multiple intraocular viral infections after second haematopoietic stem cell transplantation. Case presentation A 39-year-old female patient developed retinitis after a second haematopoietic stem cell transplant. Right eye was tested for three viral infections– cytomegalovirus, Epstein‒Barr virus and herpes simplex virus, while left was infected with cytomegalovirus. The patient was subsequently treated with vitreous cavity ganciclovir injections, and 1 week later both eyes tested negative for aqueous humour viruses. Discussion and conclusion CMV, EBV and HSV belong to the herpes virus family. They are all commonly observed in the body and represent opportunity infectious viruses. The retinitis they cause have different characteristics. But simultaneous infection of the eye by multiple viruses is quite rare. In this case, three viruses were detected in the patient’s eye, but whether the retina was caused by all three viruses at the same time could not be determined. A satisfactory outcome was achieved after treatment with vitreous cavity ganciclovir injection

    Bioinformatic Identification and Expression Analysis of Banana MicroRNAs and Their Targets

    No full text
    <div><p>MicroRNAs (miRNAs) represent a class of endogenous non-coding small RNAs that play important roles in multiple biological processes by degrading targeted mRNAs or repressing mRNA translation. Thousands of miRNAs have been identified in many plant species, whereas only a limited number of miRNAs have been predicted in <i>M</i>. <i>acuminata</i> (A genome) and <i>M</i>. <i>balbisiana</i> (B genome). Here, previously known plant miRNAs were BLASTed against the Expressed Sequence Tag (EST) and Genomic Survey Sequence (GSS), a database of banana genes. A total of 32 potential miRNAs belonging to 13 miRNAs families were detected using a range of filtering criteria. 244 miRNA:target pairs were subsequently predicted, most of which encode transcription factors or enzymes that participate in the regulation of development, growth, metabolism, and other physiological processes. In order to validate the predicted miRNAs and the mutual relationship between miRNAs and their target genes, qRT-PCR was applied to detect the tissue-specific expression levels of 12 putative miRNAs and 6 target genes in roots, leaves, flowers, and fruits. This study provides some important information about banana pre-miRNAs, mature miRNAs, and miRNA target genes and these findings can be applied to future research of miRNA functions.</p></div

    The relative expression level of selected miRNAs in leave, root, flower, and fruit of banana.

    No full text
    <p>The horizontal axis indicates the 12 miRNAs, and the vertical axis indicates the relative expression.</p
    • …
    corecore