13 research outputs found

    Additional file 1 of Inhibition of adult hippocampal neurogenesis induced by postoperative CD8 + T-cell infiltration is associated with cognitive decline later following surgery in adult mice

    No full text
    Additional file 1: Figure S1. RNA sequencing of the hippocampus suggested the possibility of leukocyte infiltration after surgery. (A) GO enrichment analysis; (B) KEGG pathway analysis

    Synergistic Effect of Porosity and Gradient Doping in Efficient Solar Water Oxidation of Catalyst-Free Gradient Mo:BiVO<sub>4</sub>

    No full text
    In this paper, the synergistic effect of porosity and gradient of Mo doping in BiVO<sub>4</sub> photoanodes for improving charge separation and solar water oxidation performance is reported. A simple solution-based, three-step fabrication route was adopted using a layer-by-layer assembling technique. A water oxidation photocurrent of ∼1.73 mA cm<sup>–2</sup> at 1.23 V vs reversible hydrogen electrode in neutral pH was achieved without using any sacrificial agent or electrocatalyst. The gradient Mo doping was found to enhance charge separation efficiency, which was verified through a shift in the water oxidation onset potential cathodically to ∼200 mV. In addition, these results were further confirmed by a higher open-circuit photovoltage and flat band potential investigations. This was attributed to the surface energetics played by gradient Mo doping that served as the driving force in reducing the onset potential for water oxidation. The coupled effect of enhanced light absorption and charge separation was revealed by monitoring the difference in decoupling the water oxidation efficiencies of porous and planar Mo:BiVO<sub>4</sub> photoanodes. This study demonstrated an improvement in the catalytic and charge separation efficiency of Mo:BiVO<sub>4</sub> photoanodes due to the introduction of porous structured homojunctions in a gradient manner. The simple synthesis approach adopted in the present study can be utilized and scaled up in making efficient photoanodes for competent solar water oxidation cells

    Tuning Oxygen Vacancies in Oxides by Configurational Entropy

    No full text
    Tuning surface oxygen vacancies is important for oxide catalysts. Doping elements with different chemical valence states or different atomic radii into host oxides is a common method to create oxygen vacancies. However, the concentration of oxygen vacancies in oxide catalysts is still limited to the amount of foreign dopants that can be tolerated (generally less than 10% atoms). Herein, a principle of engineering the configurational entropy to tune oxygen vacancies was proposed. First, the positive relationship between the configuration entropy and the formation energy of oxygen vacancies (Eov) in 16 model oxides was estimated by a DFT calculation. To verify this, single binary oxides and high-entropy quinary oxides (HEOs) were prepared. Indeed, the concentration of oxygen vacancies in HEOs (Oβ/α = 3.66) was higher compared to those of single or binary oxides (Oβ/α = 0.22–0.75) by O1s XPS, O2-TPD, and EPR. Interestingly, the reduction temperatures of transition metal ions in HEOs were generally lower than that in single-metal oxides by H2-TPR. The lower Eov of HEOs may contribute to this feature, which was confirmed by in situ XPS and in situ XRD. Moreover, with catalytic CO/C3H6 oxidation as a model, the high-entropy (MnCuCo3NiFe)xOy catalyst showed higher catalytic activity than single and binary oxides, which experimentally verified the hypothesis of the DFT calculation. This work may inspire more oxide catalysts with preferred oxygen vacancies

    Data_Sheet_1_The Dipeptide Pro-Gly Promotes IGF-1 Expression and Secretion in HepG2 and Female Mice via PepT1-JAK2/STAT5 Pathway.docx

    No full text
    <p>It has been shown that IGF-1 secretion is influenced by dietary protein or amino acid. However, whether the dipeptides elicit regulatory effects on IGF-1 secretion remains largely unclear. Thus, this study aimed to investigate the effects of the dipeptide Pro-Gly on IGF-1 expression and secretion in HepG2 cells and mice, and explore the underlying mechanisms. The in vitro results indicated that Pro-Gly, but not Pro plus Gly, promoted the expression and secretion of IGF-1 in HepG2. Meanwhile, the expression of the peptide transporter 1 (PepT1) was elevated by Pro-Gly, whereas knockdown of PepT1 with siRNA eliminated the increase of IGF-1 expression induced by Pro-Gly. In addition, Pro-Gly activated JAK2/STAT5 signaling pathway in a PepT1-dependent manner. Furthermore, Pro-Gly enhanced the interaction between JAK2 and STAT5, and the translocation of phospho-STAT5 to nuclei. Moreover, inhibition of JAK2/STAT5 blocked the promotive effect of Pro-Gly on IGF-1 expression and secretion. In agreement with the in vitro results, the in vivo findings demonstrated that Pro-Gly, but not Pro plus Gly, stimulated the expression and secretion of IGF-1 and activated JAK2/STAT5 signaling pathway in the liver of mice injected with Pro-Gly or Pro+Gly acutely or chronically. Besides, acute injection of JAK2/STAT5 inhibitor abolished the elevation of IGF-1 expression and secretion induced by Pro-Gly in mice. Collectively, these findings suggested that the dipeptide Pro-Gly promoted IGF-1 expression and secretion in HepG2 cells and mice by activating JAK2/STAT5 signaling pathway through PepT1. These data provided new insights to the regulation of IGF-1 expression and secretion by the dipeptides.</p

    Dietary protein-induced hepatic IGF-1 secretion mediated by PPARγ activation

    No full text
    <div><p>Dietary protein or amino acid (AA) is a crucial nutritional factor to regulate hepatic insulin-like growth factor-1 (IGF-1) expression and secretion. However, the underlying intracellular mechanism by which dietary protein or AA induces IGF-1 expression remains unknown. We compared the IGF-1 gene expression and plasma IGF-1 level of pigs fed with normal crude protein (CP, 20%) and low-protein levels (LP, 14%). RNA sequencing (RNA-seq) was performed to detect transcript expression in the liver in response to dietary protein. The results showed that serum concentrations and mRNA levels of IGF-1 in the liver were higher in the CP group than in the LP group. RNA-seq analysis identified a total of 1319 differentially expressed transcripts (667 upregulated and 652 downregulated), among which the terms “oxidative phosphorylation”, “ribosome”, “gap junction”, “PPAR signaling pathway”, and “focal adhesion” were enriched. In addition, the porcine primary hepatocyte and HepG2 cell models also demonstrated that the mRNA and protein levels of IGF-1 and PPARγ increased with the increasing AA concentration in the culture. The PPARγ activator troglitazone increased IGF-1 gene expression and secretion in a dose dependent manner. Furthermore, inhibition of PPARγ effectively reversed the effects of the high AA concentration on the mRNA expression of IGF-1 and IGFBP-1 in HepG2 cells. Moreover, the protein levels of IGF-1 and PPARγ, as well as the phosphorylation of mTOR, significantly increased in HepG2 cells under high AA concentrations. mTOR phosphorylation can be decreased by the mTOR antagonist, rapamycin. The immunoprecipitation results also showed that high AA concentrations significantly increased the interaction of mTOR and PPARγ. In summary, PPARγ plays an important role in the regulation of IGF-1 secretion and gene expression in response to dietary protein.</p></div

    High-Performance Semi-Transparent Perovskite Solar Cells with over 22% Visible Transparency: Pushing the Limit through MXene Interface Engineering

    No full text
    Semi-transparent perovskite solar cells (ST-PSCs) have attracted enormous attention recently due to their potential in building-integrated photovoltaic. To obtain adequate average visible transmittance (AVT), a thin perovskite is commonly employed in ST-PSCs. While the thinner perovskite layer has higher transparency, its light absorption efficiency is reduced, and the device shows lower power conversion efficiency (PCE). In this work, a combination of high-quality transparent conducting layers and surface engineering using 2D-MXene results in a superior PCE. In situ high-temperature X-ray diffraction provides direct evidence that the MXene interlayer retards the perovskite crystallization process and leads to larger perovskite grains with fewer grain boundaries, which are favorable for carrier transport. The interfacial carrier recombination is decreased due to fewer defects in the perovskite. Consequently, the current density of the devices with MXene increased significantly. Also, optimized indium tin oxide provides appreciable transparency and conductivity as the top electrode. The semi-transparent device with a PCE of 14.78% and AVT of over 26.7% (400–800 nm) was successfully obtained, outperforming most reported ST-PSCs. The unencapsulated device maintained 85.58% of its original efficiency after over 1000 h under ambient conditions. This work provides a new strategy to prepare high-efficiency ST-PSCs with remarkable AVT and extended stability

    Effects of dietary protein regulated the serum index and IGF expression in porcine liver.

    No full text
    <p>Serum IGF-1 (A), albumin (B), and urea nitrogen (C) levels were detected in 63 day-old piglets (<i>n</i> = 6) fed with 20% crude protein diet (CP) and 14% crude protein diet (LP) using commercial kits. Total RNA was harvested and analyzed by qPCR for IGF-1 (D) and IGFBP-1 (E) mRNA expression in liver tissue (<i>n</i> = 6). Data represent the mean ± SEM. * <i>P</i> < 0.05, ** <i>P</i> < 0.01 vs. LP.</p

    Validation of microarray results by qPCR and hierarchical cluster analysis of differentially expressed genes.

    No full text
    <p>(A) Comparison of expression ratios (log 2, <i>y</i>-axis; genes, <i>x</i>-axis) measured by qPCR and microarray in the 19 selected genes. Ratios by microarray and qPCR were averaged for triplicates. (B) The levels of differentially expressed genes were calculated by log2 and compared between 20% crude protein diet (CP, <i>n</i> = 3) and 14% crude protein diet (LP, <i>n</i> = 3) groups. (C) Differentially expressed genes in PPAR signaling pathway. The red color denotes high expression, whereas the green color indicates low expression.</p

    mTOR was involved in the AA-induced activation of PPARγ.

    No full text
    <p>HepG2 cells were cultured in media with 1× and 4× physiological AA concentrations for 48 h. One fraction of the total protein was used to determine the total and phosphorylated levels of the mTOR (A and B), GAPDH, PPARγ (C), and IGF-1 (D) proteins by Western blot analysis. All results contained three replicates (<i>n</i> = 3). The other total protein extracts were analyzed by immunoprecipitation (IP) with anti-PPARγ (E) capture antibodies. Data were expressed as the mean ± SEM. Values with different letters were significantly different (<i>P</i> < 0.05).</p
    corecore