182 research outputs found

    Geometry-dependent skin effects in reciprocal photonic crystals

    Full text link
    Skin effect that all eigenmodes within a frequency range become edge states is dictated by the topological properties of complex eigenvalues unique in non-Hermitian systems. The prevailing attempts to realize such a fascinating effect are confined to either one-dimensional or nonreciprocal systems exhibiting asymmetric couplings. Here, inspired by a recent model Hamiltonian theory, we propose a realistic reciprocal two-dimensional (2D) photonic crystal (PhC) system that shows the desired skin effect. Specifically, we establish a routine for designing such non-Hermitian systems via revealing the inherent connections between the non-trivial eigenvalue topology of order-2 exceptional points (EPs) and the skin effects. Guided by the proposed strategy, we successfully design a 2D PhC that possesses the EPs with nonzero eigenvalue winding numbers. The spectral area along a specific wavevector direction is then formed by leveraging the symmetry of the macroscopic geometry and the unit cell. The projected-band-structure calculations are performed to demonstrate that the desired skin effect exists at the specific crystalline interfaces. We finally employ time-domain simulations to vividly illustrate this phenomenon by exciting a pulse at the center of a finite-sized PhC. Our results form a solid basis for further experimental confirmations and applications of the skin effect.Comment: 19 pages, 4 figure

    Adherence to a healthy sleep pattern is associated with lower risks of incident falls and fractures during aging

    Get PDF
    BackgroundAutoimmune diseases are more common among people with unhealthy sleep behaviors, and these conditions have been linked to aging-related bone health. However, there have been few studies that examined the correlation between recently developed sleep patterns based on sleep duration, sleepiness, chronotype, snoring, insomnia, and the incidence of falls and fractures.MethodsWe used a newly developed sleep pattern with components of sleep 7 to 8 h per day, absence of frequent excessive daytime sleepiness, early chronotype, no snoring, and no frequent insomnia as healthy factors to study their relationship with the incidence of falls and fractures. The analysis was conducted among 289,000 participants from the UK Biobank.ResultsThe mean follow-up period was 12.3 years (3.5 million person-years of follow-up), and 12,967 cases of falls and 16,121 cases of all fractures were documented. Compared to participants exhibiting an unfavorable sleep pattern, those adhering to a healthy sleep pattern experienced a 17% and 28% reduction in the risks of incident falls (hazard ratio [HR], 0.83; 95% CI, 0.74–0.93) and all fractures (HR, 0.72; 95% CI, 0.66–0.79) during follow-up. In addition, participants exhibiting a healthy sleep pattern, together with a high genetically determined bone mineral density (BMD), showed the lowest risks of falls and fractures.ConclusionA healthy sleep pattern was significantly linked to decreased risks of incident falls and fractures. The protective association was not modified by genetically determined BMD

    Classification of coal gangue pile vegetation based on UAV remote sensing

    Get PDF
    The accurate classification of vegetation species is the basis for the evaluation of vegetation restoration effect of coal gangue pile. In this paper, the visible image of coal gangue pile in different seasons was obtained by UAV remote sensing technology. The color space conversion and texture filtering were used to adequately explore the rich features of color, structure and texture in the visible image. Then, the traditional artificial feature selection method was improved, which could quickly, simply and efficiently screen features information to obtain the optimal classification features, and the optimized results were fused with RGB images to obtain multi-feature fusion images. Finally, based on two stages of RGB images and multi-feature fusion images, the vegetation of coal gangue pile was classified by three supervised classification methods, including support vector machine (SVM), maximum likelihood (ML) and neural network (NN). Meanwhile, the accuracy of classification results was evaluated by confusion matrix and the dynamic changes of vegetation were analyzed. The results showed that the improved artificial feature selection method could screen out the optimal classification features of coal gangue pile vegetation in different seasons. The selected classification features can not only effectively reflect the differences of various ground features, but also reduce the redundancy of feature information to improve the accuracy and efficiency of image classification. The classification result based on Support Vector Machine Classification (SVM) combined with multi-feature fusion image had highest classification accuracy, and the overall classification accuracy could reach 90.60%, and the corresponding Kappa coefficient is 0.8780, which was 9.74% and 0.1265 higher than that of RGB image of the same period, respectively. And, the accuracy of MLC and NNC classification methods was less improved. Compared with the RGB images of the same period, the overall classification accuracy could be improved by 6.95% and 3.93%, respectively, and the corresponding Kappa coefficient could be improved by 0.0845 and 0.0541, respectively. At the same time, based on the result of optimal classification, this paper evaluated the vegetation restoration effect of coal gangue pile in Changcun from the perspectives of vegetation coverage and vegetation allocation pattern. The results showed that a variety of different vegetation allocation patterns were adopted by the coal gangue pile, and the vegetation coverage in autumn and summer is higher than 75%. The overall effect of vegetation restoration was better. This study could provide reference for the identification and classification of coal gangue piles vegetation information based on UAV visible light image, and meanwhile provide opinions or suggestions for the later management and maintenance of coal gangue piles vegetation restoration

    PKM2 Is Required to Activate Myeloid Dendritic Cells from Patients with Severe Aplastic Anemia

    Get PDF
    Severe aplastic anemia (SAA) is an autoimmune disease in which bone marrow failure is mediated by activated myeloid dendritic cells (mDCs) and T lymphocytes. Recent research has identified a strong immunomodulatory effect of pyruvate kinase M2 (PKM2) on dendritic cells in immune-mediated diseases. In this study, we aimed to explore the role of PKM2 in the activation of mDCs in SAA. We observed conspicuously higher levels of PKM2 in mDCs from SAA patients compared to normal controls at both the gene and protein levels. Concurrently, we unexpectedly discovered that after the mDC-specific downregulation of PKM2, mDCs from patients with SAA exhibited weakened phagocytic activity and significantly decreased and shortened dendrites relative to their counterparts from normal controls. The expression levels of the costimulatory molecules CD86 and CD80 were also reduced on mDCs. Our results also suggested that PKM2 knockdown in mDCs reduced the abilities of these cells to promote the activation of CD8+ T cells (CTLs), leading to the decreased secretion of cytotoxic factors by the latter cell type. These findings demonstrate that mDC activation requires an elevated intrinsic PKM2 level and that PKM2 improves the immune status of patients with SAA by enhancing the functions of mDCs and, consequently, CTLs
    • …
    corecore