135 research outputs found

    Dynamic Graph Representation Learning via Graph Transformer Networks

    Full text link
    Dynamic graph representation learning is an important task with widespread applications. Previous methods on dynamic graph learning are usually sensitive to noisy graph information such as missing or spurious connections, which can yield degenerated performance and generalization. To overcome this challenge, we propose a Transformer-based dynamic graph learning method named Dynamic Graph Transformer (DGT) with spatial-temporal encoding to effectively learn graph topology and capture implicit links. To improve the generalization ability, we introduce two complementary self-supervised pre-training tasks and show that jointly optimizing the two pre-training tasks results in a smaller Bayesian error rate via an information-theoretic analysis. We also propose a temporal-union graph structure and a target-context node sampling strategy for efficient and scalable training. Extensive experiments on real-world datasets illustrate that DGT presents superior performance compared with several state-of-the-art baselines

    Soil CO2 and N2O emissions and microbial abundances altered by temperature rise and nitrogen addition in active-layer soils of permafrost peatland

    Get PDF
    Changes in soil CO2 and N2O emissions due to climate change and nitrogen input will result in increased levels of atmospheric CO2 and N2O, thereby feeding back into Earth’s climate. Understanding the responses of soil carbon and nitrogen emissions mediated by microbe from permafrost peatland to temperature rising is important for modeling the regional carbon and nitrogen balance. This study conducted a laboratory incubation experiment at 15 and 20°C to observe the impact of increasing temperature on soil CO2 and N2O emissions and soil microbial abundances in permafrost peatland. An NH4NO3 solution was added to soil at a concentration of 50 mg N kg−1 to investigate the effect of nitrogen addition. The results indicated that elevated temperature, available nitrogen, and their combined effects significantly increased CO2 and N2O emissions in permafrost peatland. However, the temperature sensitivities of soil CO2 and N2O emissions were not affected by nitrogen addition. Warming significantly increased the abundances of methanogens, methanotrophs, and nirK-type denitrifiers, and the contents of soil dissolved organic carbon (DOC) and ammonia nitrogen, whereas nirS-type denitrifiers, β-1,4-glucosidase (βG), cellobiohydrolase (CBH), and acid phosphatase (AP) activities significantly decreased. Nitrogen addition significantly increased soil nirS-type denitrifiers abundances, β-1,4-N- acetylglucosaminidase (NAG) activities, and ammonia nitrogen and nitrate nitrogen contents, but significantly reduced bacterial, methanogen abundances, CBH, and AP activities. A rising temperature and nitrogen addition had synergistic effects on soil fungal and methanotroph abundances, NAG activities, and DOC and DON contents. Soil CO2 emissions showed a significantly positive correlation with soil fungal abundances, NAG activities, and ammonia nitrogen and nitrate nitrogen contents. Soil N2O emissions showed positive correlations with soil fungal, methanotroph, and nirK-type denitrifiers abundances, and DOC, ammonia nitrogen, and nitrate contents. These results demonstrate the importance of soil microbes, labile carbon, and nitrogen for regulating soil carbon and nitrogen emissions. The results of this study can assist simulating the effects of global climate change on carbon and nitrogen cycling in permafrost peatlands

    Phage vB_PaeS-PAJD-1 Rescues Murine Mastitis Infected With Multidrug-Resistant Pseudomonas aeruginosa

    Get PDF
    Pseudomonas aeruginosa is a Gram-negative pathogen that causes a variety of infections in humans and animals. Due to the inappropriate use of antibiotics, multi-drug resistant (MDR) P. aeruginosa strains have emerged and are prevailing. In recent years, cow mastitis caused by MDR P. aeruginosa has attracted attention. In this study, a microbial community analysis revealed that P. aeruginosa could be a cause of pathogen-induced cow mastitis. Five MDR P. aeruginosa strains were isolated from milk diagnosed as mastitis positive. To seek an alternative antibacterial agent against MDR, P. aeruginosa, a lytic phage, designated vB_PaeS_PAJD-1 (PAJD-1), was isolated from dairy farm sewage. PAJD-1 was morphologically classified as Siphoviridae and was estimated to be about 57.9 kb. Phage PAJD-1 showed broad host ranges and a strong lytic ability. A one-step growth curve analysis showed a relatively short latency period (20 min) and a relatively high burst size (223 PFU per infected cell). Phage PAJD-1 remained stable over wide temperature and pH ranges. Intramammary-administered PAJD-1 reduced bacterial concentrations and repaired mammary glands in mice with mastitis induced by MDR P. aeruginosa. Furthermore, the cell wall hydrolase (termed endolysin) from phage PAJD-1 exhibited a strong bacteriolytic and a wide antibacterial spectrum against MDR P. aeruginosa. These findings present phage PAJD-1 as a candidate for phagotherapy against MDR P. aeruginosa infection
    • …
    corecore