47 research outputs found

    New molecular tools: application of the ÎĽAQUA phylochip and concomitant FISH probes to study freshwater pathogens from samples taken along the Tiber River, Italy

    Get PDF
    Current knowledge about aquatic pathogens are scarce because bacteria, protozoans, algae and their toxins occur at low concentrations, making them difficult to measure directly or to filter sufficient volumes to facilitate detection. We developed and validated tools to detect pathogens in freshwater systems. To evaluate impacts on water quality, a phylogenetic microarray was developed in the EU project ÎĽAQUA to detect simultaneously numerous pathogens and was applied in MicroCoKit, to samples taken from four locations from two seasons for two years along the length of the Tiber River, Italy. The sites ranged from a pristine site near its source to ones contaminated by agricultural, industrial and anthropogenic waste moving downstream to near its mouth. Fifty litres were collected and concentrated using a hollow-fibre ultrafiltration, a rapid method with minimal cell loss to provide a concentrate for downstream analysis. The 60 Da cut-off ensures many organics, such as toxins, will be concentrated for analysis. Aliquots from the concentrate were preserved in TRI-Reagent and total RNA extracted, labelled and hybridised to the phylochip to detect pathogenic bacteria, protozoa and toxic cyanobacteria. The microarray results gave positive signals for all pathogens. Calibration curves enabled us to infer cell concentrations. Cross validation was performed using FISH probes for selected toxic cyanobacteria and hybridised to aliquots taken from the raw water prior to concentration by the hollow fibre filters

    Mapping Selected Emergent Marine Toxin-Producing Organisms Using Historical Samples with Two Methods (Biosensors and Real-Time PCR): A Comparison of Resolution

    Get PDF
    The Continuous Plankton Recorder (CPR) survey is a valuable resource for mapping changes in plankton distribution and understanding harmful algal ecology because of its breadth and longevity. Preservation methods with formalin degrade DNA, making it difficult to use as a molecular tool for archived marine samples. DNA was extracted from CPR samples immediately after collection, seven months later and after nine years of storage from a cruise track along the Iberian Peninsula. PCR reactions performed from the nine-year timepoint were hybridized to probes in an electrochemical biosensor and compared to results obtained from RT-PCR performed at two earlier time points. The successful identification of Pseudo-nitzschia spp., Prorocentrum lima, Alexandrium minutum, Alexandrium ostenfeldii, Gambierdiscus spp. and Coolia spp. was documented. The biosensor analysis outperformed RT-PCR, allowing us to document certain tropical toxic dinoflagellates, viz., Gambierdiscus and Coolia, that produce human ciguatoxins and Coolia toxins, respectively. These non-native algal toxins can accumulate, pervade the food web and negatively impact human food security. This supports the northerly movement of microalgae with climate change in offshore Iberian peninsular waters. This study highlights biosensors as a cost-effective tool for the offshore monitoring of HAB species and advances molecular technologies for long-term CPR datasets that have limited records of harmful algae. DNA from formalin-preserved CPR samples is degraded, so the use of a short, multiprobe biosensor can augment historical plankton records with contemporary methods that also capture infrequently occurring benthic taxa carried in surface waters. The integration of probe-based biosensor technologies offers a promising avenue for exploring plankton dynamics in response to environmental changes.</jats:p

    A new fluorescent oligonucleotide probe for in-situ identification of Microcystis aeruginosa in freshwater.

    Get PDF
    contaminated water bodies (freshwater, brackish and marine areas). Among 150 known cyanobacteria genera,>40 species are able to produce toxins, which are natural compounds that differ from both a chemical and toxicological point of view and are responsible for acute and chronic poisoning in animals and humans. Among the main classes of cyanotoxins, microcystins are frequently found in the environment. Fast and accurate methods for unequivocally identifying microcystin-producing cyanobacteria, such as Microcystis aeruginosa in water bodies, are necessary to distinguish them from other non-toxic cyanobacteria and to manage and monitor algal blooms. For this purpose, we designed, developed and validated an oligonucleotide probe for FISH (Fluorescence In Situ Hybridization) analysis to detect Microcystis aeruginosa at the species level even at relatively low concentrations in freshwater. The FISH probe, MicAerD03, was designed using the ARB software with the Silva database within the framework of the MicroCoKit project, also with the intention of adding it to the microarray from the EU project, μAQUA, for freshwater pathogens, which had only genus level probes for Microcystis. We tested various fixative methods to minimize the natural autofluorescence from chlorophyll-a and certain accessory pigments (viz., phycobilins and carotenoids). The FISH probe was tested on pure cultures of Microcystis aeruginosa, and then successfully applied to water samples collected from different sampling points of the Tiber River (Italy), using a laser confocal microscope. Subsequently, the probe was also conjugated at the 5′ end with horse-radish peroxidase (HRP-MicAerD03) to apply the CAtalysed Reported Deposition-FISH (CARD-FISH) for increasing the fluorescence signal of the mono-fluorescently labelled probe and make it possible to detect M. aeruginosa using an epifluorescence microscope. Samples taken within the EU MicroCokit project indicated thatmicroarray signals for Microcystis were coming from single cells and not colonial cells. We confirmed this with the CARD-FISH protocol used here to validate the microarray signals for Microcystis detected at the genus level in MicroCokit. This paper provides a new early warning tool for investigating M. aeruginosa at the species level even at low cell concentrations in surface water, which can be added to the μAqua microarray for all freshwater pathogens to complete the probe hierarchy for Microcystis aeruginosa

    Advances in the Detection of Toxic Algae Using Electrochemical Biosensors

    Get PDF
    Harmful algal blooms (HABs) are more frequent as climate changes and tropical toxic species move northward, especially along the Iberian Peninsula, a rich aquaculture area. Monitoring programs, detecting the presence of toxic algae before they bloom, are of paramount importance to protect ecosystems, aquaculture, human health and local economies. Rapid, reliable species identification methods using molecular barcodes coupled to biosensor detection tools have received increasing attention as an alternative to the legally required but impractical microscopic counting-based techniques. Our electrochemical detection system has improved, moving from conventional sandwich hybridization protocols using di�erent redox mediators and signal probes with di�erent labels to a novel strategy involving the recognition of RNA heteroduplexes by antibodies further labelled with bacterial antibody binding proteins conjugated with multiple enzyme molecules. Each change has increased sensitivity. A 150-fold signal increase has been produced with our newest protocol using magnetic microbeads (MBs) and amperometric detection at screen-printed carbon electrodes (SPCEs) to detect the target RNA of toxic species. We can detect as few as 10 cells

    Influence of contaminant-spiked polyethylene-type microplastics on the growth and primary production of the freshwater phytoplankton species Scenedesmus armatus and Microcystis aeruginosa

    Get PDF
    Microplastic pollution and its ecological impact on the aquatic environment are a current focus of research in the scientific community. These microplastics may adsorb contaminants discharged into the aquatic environment, thereby serving as a sink and source for the dissemination of these associated chemical contaminants. However, knowledge about the potential risks of microplastics and associated chemical contaminants on aquatic biota, especially on primary freshwater producers, remains to be explored. In this study, the impact of a polyethylene microplastic type (MP) associated with amoxicillin, ibuprofen, sertraline and simazine (OCs) on the cell growth and photosynthetic activity of the green algae Scenedesmus armatus and the cyanobacteria Microcystis aeruginosa was evaluated after 28 days of exposure. The results show that all the organic contaminants and their respective MP-OC complexes induced stress on cell growth after 28 days of exposure, except when the cyanobacterial strain was exposed to amoxicillin and ibuprofen. Similarly, photosynthetic activity was affected by exposure to MP-OC complexes, with the most evident effect on cellular respiration in the cyanobacterial strain and on net photosynthesis in the green algae strain. Additionally, the ability of the M. aeruginosa strain to synthesize microcystin was significantly reduced. These results show that the formation of MP-OC complexes could reduce their adverse effects, although there is wide variability depending on both the type of organic contaminant and the photosynthetic organisms involved, so further studies are needed to better understand the interactions between these aquatic contaminants

    Effect of Carnitine and herbal mixture extract on obesity induced by high fat diet in rats

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Obesity-associated type 2 diabetes is rapidly increasing throughout the world. It is generally recognized that natural products with a long history of safety can modulate obesity.</p> <p>Aim</p> <p>To investigate the development of obesity in response to a high fat diet (HFD) and to estimate the effect of L-carnitine and an Egyptian Herbal mixture formulation (HMF) (consisting of T. chebula, Senae, rhubarb, black cumin, aniseed, fennel and licorice) on bodyweight, food intake, lipid profiles, renal, hepatic, cardiac function markers, lipid Peroxidation, and the glucose and insulin levels in blood and liver tissue in rats.</p> <p>Method</p> <p>White male albino rats weighing 80-90 gm, 60 days old. 10 rats were fed a normal basal diet (Cr), 30 rats fed a high-fat diet (HFD) for 14 weeks during the entire study. Rats of the HFD group were equally divided into 3 subgroups each one include 10 rats. The first group received HFD with no supplement (HFD), the 2<sup>nd </sup>group HFD+L-carnitine and the third group received HFD+HMF. Carnitine and HMF were administered at 10<sup>th </sup>week (start time for treatments) for 4 weeks.</p> <p>Body weight, lipid profile & renal function (urea, uric acid creatinine) ALT & AST activities, cardiac markers, (LDH, C.K-NAC and MB) the oxidative stress marker reduced glutathione (GSH), and Malondialdehyde (MDA) catalase activity, in addition to glucose, insulin, and insulin resistance in serum & tissues were analyzed.</p> <p>Results</p> <p>Data showed that feeding HFD diet significantly increased final body weight, triglycerides (TG), total cholesterol, & LDL concentration compared with controls, while significantly decreasing HDL; meanwhile treatment with L-carnitine, or HMF significantly normalized the lipid profile.</p> <p>Serum ALT, urea, uric acid, creatinine, LDH, CK-NAC, CK-MB were significantly higher in the high fat group compared with normal controls; and administration of L-carnitine or herbal extract significantly lessened the effect of the HFD. Hyperglycemia, hyperinsulinemia, and high insulin resistance (IR) significantly increased in HFD in comparison with the control group. The treatment with L-carnitine or HMF improved the condition. HFD elevated hepatic MDA and lipid peroxidation associated with reduction in hepatic GSH and catalase activity; whereas administration of L-carnitine or herbal extract significantly ameliorated these hepatic alterations.</p> <p>Conclusion</p> <p>HFD induced obesity associated with a disturbed lipid profile, defective antioxidant stability, and high values of IR parameters; this may have implications for the progress of obesity related problems. Treatment with L-carnitine, or HMF extract improved obesity and its associated metabolic problems in different degrees. Also HMF has antioxidant, hypolipidaemic insulin sensitizing effects. Moreover HMF might be a safe combination on the organs whose functions were examined, as a way to surmount the obesity state; and it has a distinct anti-obesity effect.</p

    Epigenetic activities of flavonoids in the prevention and treatment of cancer

    Get PDF

    Mapping Selected Emergent Marine Toxin-Producing Organisms Using Historical Samples with Two Methods (Biosensors and Real-Time PCR): A Comparison of Resolution

    Get PDF
    \ua9 2024 by the authors. The Continuous Plankton Recorder (CPR) survey is a valuable resource for mapping changes in plankton distribution and understanding harmful algal ecology because of its breadth and longevity. Preservation methods with formalin degrade DNA, making it difficult to use as a molecular tool for archived marine samples. DNA was extracted from CPR samples immediately after collection, seven months later and after nine years of storage from a cruise track along the Iberian Peninsula. PCR reactions performed from the nine-year timepoint were hybridized to probes in an electrochemical biosensor and compared to results obtained from RT-PCR performed at two earlier time points. The successful identification of Pseudo-nitzschia spp., Prorocentrum lima, Alexandrium minutum, Alexandrium ostenfeldii, Gambierdiscus spp. and Coolia spp. was documented. The biosensor analysis outperformed RT-PCR, allowing us to document certain tropical toxic dinoflagellates, viz., Gambierdiscus and Coolia, that produce human ciguatoxins and Coolia toxins, respectively. These non-native algal toxins can accumulate, pervade the food web and negatively impact human food security. This supports the northerly movement of microalgae with climate change in offshore Iberian peninsular waters. This study highlights biosensors as a cost-effective tool for the offshore monitoring of HAB species and advances molecular technologies for long-term CPR datasets that have limited records of harmful algae. DNA from formalin-preserved CPR samples is degraded, so the use of a short, multiprobe biosensor can augment historical plankton records with contemporary methods that also capture infrequently occurring benthic taxa carried in surface waters. The integration of probe-based biosensor technologies offers a promising avenue for exploring plankton dynamics in response to environmental changes
    corecore