1 research outputs found

    Changing Ce<sup>3+</sup> Content and Codoping Mn<sup>2+</sup> Induced Tunable Emission and Energy Transfer in Ca<sub>2.5</sub>Sr<sub>0.5</sub>Al<sub>2</sub>O<sub>6</sub>:Ce<sup>3+</sup>,Mn<sup>2+</sup>

    No full text
    A series of color-tunable Ce<sup>3+</sup> single-doped and Ce<sup>3+</sup>, Mn<sup>2+</sup> codoped Ca<sub>2.5</sub>Sr<sub>0.5</sub>Al<sub>2</sub>O<sub>6</sub> phosphors were synthesized by a high-temperature solid-state reaction. The crystal structure, luminescent properties, and energy transfer were studied. For Ca<sub>2.5</sub>Sr<sub>0.5</sub>Al<sub>2</sub>O<sub>6</sub>:Ce<sup>3+</sup> phosphors obtained with Al­(OH)<sub>3</sub> as the raw material, three emission profiles were observed. The peak of photoluminescence (PL) spectra excited at ∼360 nm shifts from 470 to 420 nm, while that of the PL spectra excited at 305 nm stays unchanged at 470 nm with the increase of Ce<sup>3+</sup> content. Furthermore, the peak of PL spectra is situated at 500 nm under excitation at ∼400 nm. The relationship between the luminescent properties and crystal structure was studied in detail. Ce<sup>3+</sup>, Mn<sup>2+</sup> codoped Ca<sub>2.5</sub>Sr<sub>0.5</sub>Al<sub>2</sub>O<sub>6</sub> phosphors also showed interesting luminescent properties when focused on the PL spectra excited at 365 nm. Obvious different decreasing trends of blue and cyan emission components were observed in Ca<sub>2.5</sub>Sr<sub>0.5</sub>Al<sub>2</sub>O<sub>6</sub>:0.11Ce<sup>3+</sup>,<i>x</i>Mn<sup>2+</sup> phosphors with the increase in Mn<sup>2+</sup> content, suggesting different energy transfer efficiencies from blue- and cyan-emitting Ce<sup>3+</sup> to Mn<sup>2+</sup>. Phosphors with high color-rendering index (CRI) values are realized by adjusting the doping content of both Ce<sup>3+</sup> and Mn<sup>2+</sup>. Studies suggest that the Ca<sub>2.5</sub>Sr<sub>0.5</sub>Al<sub>2</sub>O<sub>6</sub>:Ce<sup>3+</sup>,Mn<sup>2+</sup> phosphor is a promising candidate for near UV-excited w-LEDs
    corecore