13 research outputs found

    āļāļēāļĢāļ§āļīāđ€āļ„āļĢāļēāļ°āļŦāđŒāļžāļĪāļ•āļīāļāļĢāļĢāļĄāļ‚āļ­āļ‡āļāļģāđāļžāļ‡āļāļąāļ™āļ”āļīāļ™āđ€āļŦāļĨāđ‡āļāđ€āļŠāļĢāļīāļĄāđāļšāļāļ—āļēāļ™ āļ”āđ‰āļ§āļĒāļ§āļīāļ˜āļĩāđ„āļŸāđ„āļ™āļ•āđŒāļ­āļīāļĨāļīāđ€āļĄāļ™āļ•āđŒ āđāļšāļš 3 āļĄāļīāļ•āļī āđ€āļ—āļĩāļĒāļšāļāļąāļšāļœāļĨāļ•āļĢāļ§āļˆāļ§āļąāļ”āđƒāļ™āļŠāļ™āļēāļĄ

    Get PDF
    āļāļģāđāļžāļ‡āļāļąāļ™āļ”āļīāļ™āđ€āļŦāļĨāđ‡āļāđ€āļŠāļĢāļīāļĄāđāļšāļāļ—āļēāļ™āļ›āļĢāļ°āļāļ­āļšāļ”āđ‰āļ§āļĒāđ€āļŦāļĨāđ‡āļāđ€āļŠāļĢāļīāļĄāđāļšāļāļ—āļēāļ™āļ—āļĩāđˆāđ€āļŠāļ·āđˆāļ­āļĄāļ•āđˆāļ­āđ€āļ‚āđ‰āļēāļāļąāļšāđāļœāđˆāļ™āļœāļ™āļąāļ‡āļ„āļ­āļ™āļāļĢāļĩāļ• āđ€āļŦāļĨāđ‡āļāđ€āļŠāļĢāļīāļĄāđāļšāļāļ—āļēāļ™āļ›āļĢāļ°āļāļ­āļšāļ”āđ‰āļ§āļĒāđ€āļŦāļĨāđ‡āļāļ•āļēāļĄāļĒāļēāļ§āđāļĨāļ°āđ€āļŦāļĨāđ‡āļāļ•āļēāļĄāļ‚āļ§āļēāļ‡ āđ€āļŦāļĨāđ‡āļāđ€āļŠāļĢāļīāļĄāļ•āļēāļĄāļĒāļēāļ§āļ—āļģāļĄāļēāļˆāļēāļāđ€āļŦāļĨāđ‡āļāļ‚āđ‰āļ­āļ­āđ‰āļ­āļĒ āđƒāļ™āļ‚āļ“āļ°āļ—āļĩāđˆāđ€āļŦāļĨāđ‡āļāļ•āļēāļĄāļ‚āļ§āļēāļ‡āļ—āļģāļĄāļēāļˆāļēāļāđ€āļŦāļĨāđ‡āļāļ‰āļēāļāļ‹āļķāđˆāļ‡āļ—āļģāđƒāļŦāđ‰āđāļĢāļ‡āļ•āđ‰āļēāļ™āļ—āļēāļ™āđāļĢāļ‡āļ”āļķāļ‡āđāļšāļāļ—āļēāļ™āļŠāļđāļ‡ āļāļģāđāļžāļ‡āļāļąāļ™āļ”āļīāļ™āļ—āļĩāđˆāļ—āļģāļāļēāļĢāļĻāļķāļāļĐāļē āļĄāļĩāļ„āļ§āļēāļĄāļŠāļđāļ‡ 9.75 āđ€āļĄāļ•āļĢ āđāļĨāļ°āļ„āļ§āļēāļĄāļāļ§āđ‰āļēāļ‡ 14.80 āđ€āļĄāļ•āļĢ āļŠāļĢāđ‰āļēāļ‡āļ‚āļķāđ‰āļ™āļ—āļĩāđˆāđ€āļŦāļĄāļ·āļ­āļ‡āđāļĄāđˆāđ€āļĄāļēāļ° āļˆāļąāļ‡āļŦāļ§āļąāļ”āļĨāļģāļ›āļēāļ‡ āļ•āļąāđ‰āļ‡āļ­āļĒāļđāđˆāļšāļĢāļīāđ€āļ§āļ“āļ”āđ‰āļēāļ™āļŦāļ™āđ‰āļēāđ€āļ™āļīāļ™āļ”āļīāļ™āļ—āļĩāđˆāļĄāļĩāļ„āļ§āļēāļĄāļŠāļąāļ™āļ›āļĢāļ°āļĄāļēāļ“ 48 āļ­āļ‡āļĻāļē āļāļģāđāļžāļ‡āļāļąāļ™āļ”āļīāļ™āļ–āļđāļāđ€āļŠāļĢāļīāļĄāļāļģāļĨāļąāļ‡āļ”āđ‰āļ§āļĒāđ€āļŦāļĨāđ‡āļāđ€āļŠāļĢāļīāļĄāđāļšāļāļ—āļēāļ™āļ—āļąāđ‰āļ‡ 3 āļ”āđ‰āļēāļ™āļ‚āļ­āļ‡āļāļģāđāļžāļ‡ āļ‡āļēāļ™āļ§āļīāļˆāļąāļĒāļ™āļĩāđ‰āđ„āļ”āđ‰āļĻāļķāļāļĐāļēāđ€āļ›āļĢāļĩāļĒāļšāđ€āļ—āļĩāļĒāļšāļœāļĨāļ•āļĢāļ§āļˆāļ§āļąāļ”āļˆāļĢāļīāļ‡āļ—āļĩāđˆāđ€āļāļīāļ”āļ‚āļķāđ‰āļ™āđƒāļ™āļŠāļ™āļēāļĄ āļāļąāļšāļžāļĪāļ•āļīāļāļĢāļĢāļĄāļ—āļĩāđˆāđ„āļ”āđ‰āļˆāļēāļāļāļēāļĢāļ§āļīāđ€āļ„āļĢāļēāļ°āļŦāđŒāļ”āđ‰āļ§āļĒāļ§āļīāļ˜āļĩāđ„āļŸāđ„āļ™āļ•āđŒāļ­āļīāļĨāļīāđ€āļĄāļ™āļ•āđŒāđāļšāļš 3 āļĄāļīāļ•āļī āđ‚āļ”āļĒāđ‚āļ›āļĢāđāļāļĢāļĄ PLAXIS 3D āļšāļ—āļ„āļ§āļēāļĄāļ™āļĩāđ‰āļ™āļģāđ€āļŠāļ™āļ­āļžāļĪāļ•āļīāļāļĢāļĢāļĄāļ‚āļ­āļ‡āļāļģāđāļžāļ‡āļāļąāļ™āļ”āļīāļ™ āđƒāļ™ 3 āļŠāļ āļēāļ§āļ° āđ„āļ”āđ‰āđāļāđˆ āļŦāļĨāļąāļ‡āļŠāļīāđ‰āļ™āļŠāļļāļ”āļāļēāļĢāļāđˆāļ­āļŠāļĢāđ‰āļēāļ‡ āļāļēāļĢāļ•āļīāļ”āļ•āļąāđ‰āļ‡āļ—āđˆāļēāđ€āļ—āļĩāļĒāļšāļĢāļ–āļšāļĢāļĢāļ—āļļāļÂ  āđāļĨāļ°āļ‚āļ“āļ°āđ€āļ›āļīāļ”āđƒāļŠāđ‰āļ‡āļēāļ™ āļ‹āļķāđˆāļ‡āļ›āļĢāļ°āļāļ­āļšāļ”āđ‰āļ§āļĒāļžāļĪāļ•āļīāļāļĢāļĢāļĄāļāļēāļĢāļ—āļĢāļļāļ”āļ•āļąāļ§āđƒāļ™āđāļ™āļ§āļ”āļīāđˆāļ‡āļ‚āļ­āļ‡āļ”āļīāļ™āļ–āļĄāļ—āļĩāđˆāļ•āļĢāļ§āļˆāļ§āļąāļ”āđ‚āļ”āļĒ Settlement plate, āļāļēāļĢāđ€āļ„āļĨāļ·āđˆāļ­āļ™āļ•āļąāļ§āļ”āđ‰āļēāļ™āļ‚āđ‰āļēāļ‡ āļ•āļĢāļ§āļˆāļ§āļąāļ”āđ‚āļ”āļĒ Inclinometer āđāļĨāļ°āđāļĢāļ‡āļ”āļķāļ‡āđƒāļ™āđ€āļŦāļĨāđ‡āļāđ€āļŠāļĢāļīāļĄāđāļšāļāļ—āļēāļ™ āļ•āļĢāļ§āļˆāļ§āļąāļ”āđ‚āļ”āļĒāđƒāļŠāđ‰āđ€āļāļˆāļ§āļąāļ”āļ„āļ§āļēāļĄāđ€āļ„āļĢāļĩāļĒāļ” āļˆāļēāļāļœāļĨāļāļēāļĢāļĻāļķāļāļĐāļēāļžāļšāļ§āđˆāļē āļžāļĪāļ•āļīāļāļĢāļĢāļĄāļāļēāļĢāļ—āļĢāļļāļ”āļ•āļąāļ§āđƒāļ™āļŠāļ āļēāļ§āļ°āļāđˆāļ­āļ™āđ€āļ›āļīāļ”āđƒāļŠāđ‰āļ‡āļēāļ™āļĄāļĩāļ„āļ§āļēāļĄāđāļ•āļāļ•āđˆāļēāļ‡āļāļąāļ™āļĢāļ°āļŦāļ§āđˆāļēāļ‡āļœāļĨāļāļēāļĢāļ•āļĢāļ§āļˆāļ§āļąāļ”āđāļĨāļ°āļāļēāļĢāļ§āļīāđ€āļ„āļĢāļēāļ°āļŦāđŒ āđāļ•āđˆāđ€āļĄāļ·āđˆāļ­āļ—āļģāļāļēāļĢāđ€āļ›āļīāļ”āđƒāļŠāđ‰āļ‡āļēāļ™āđ„āļ›āđāļĨāđ‰āļ§ (āļ—āļĩāđˆāđ€āļ§āļĨāļē 270 āļ§āļąāļ™ āļŦāļĨāļąāļ‡āđ€āļĢāļīāđˆāļĄāļ•āđ‰āļ™āļāđˆāļ­āļŠāļĢāđ‰āļēāļ‡) āļāļēāļĢāļ—āļĢāļļāļ”āļ•āļąāļ§āļŠāļļāļ”āļ—āđ‰āļēāļĒāļ‚āļ­āļ‡āļāļģāđāļžāļ‡āļāļąāļ™āļ”āļīāļ™āļĄāļĩāļ„āđˆāļēāđƒāļāļĨāđ‰āđ€āļ„āļĩāļĒāļ‡āļāļąāļ™ āđƒāļ™āļ‚āļ“āļ°āļ—āļĩāđˆāļāļēāļĢāđ€āļ„āļĨāļ·āđˆāļ­āļ™āļ•āļąāļ§āļ”āđ‰āļēāļ™āļ‚āđ‰āļēāļ‡āļ—āļąāđ‰āļ‡āļŠāļ­āļ‡āļ”āđ‰āļēāļ™āļ‚āļ­āļ‡āļāļģāđāļžāļ‡āļĄāļĩāļĢāļđāļ›āđāļšāļšāđ€āļ”āļĩāļĒāļ§āļāļąāļ™ āļœāļĨāļāļēāļĢāļ•āļĢāļ§āļˆāļ§āļąāļ”āļāļēāļĢāđ€āļ„āļĨāļ·āđˆāļ­āļ™āļ•āļąāļ§āļ”āđ‰āļēāļ™āļ‚āđ‰āļēāļ‡āļĄāļĩāļ„āđˆāļēāļŠāļđāļ‡āļāļ§āđˆāļēāļœāļĨāļāļēāļĢāļ§āļīāđ€āļ„āļĢāļēāļ°āļŦāđŒ āđāļĨāļ°āđāļĢāļ‡āļ”āļķāļ‡āļŠāļđāļ‡āļŠāļļāļ”āļ—āļĩāđˆāđ€āļāļīāļ”āļ‚āļķāđ‰āļ™āđƒāļ™āđ€āļŦāļĨāđ‡āļāđ€āļŠāļĢāļīāļĄāđāļšāļāļ—āļēāļ™āļ‚āļ­āļ‡āļ—āļąāđ‰āļ‡āļāļēāļĢāļ•āļĢāļ§āļˆāļ§āļąāļ”āđāļĨāļ°āļ§āļīāđ€āļ„āļĢāļēāļ°āļŦāđŒ āļĄāļĩāļ„āļ§āļēāļĄāđƒāļāļĨāđ‰āđ€āļ„āļĩāļĒāļ‡āļāļąāļ™āđāļĨāļ°āļĢāļ°āļ™āļēāļšāđāļĢāļ‡āļ”āļķāļ‡āļŠāļđāļ‡āļŠāļļāļ”āļŠāļēāļĄāļēāļĢāļ–āļ›āļĢāļ°āļĄāļēāļ“āđ„āļ”āđ‰āļ”āđ‰āļ§āļĒāļ§āļīāļ˜āļĩāļ‚āļ­āļ‡ AASHTO (2002)āļāļģāđāļžāļ‡āļāļąāļ™āļ”āļīāļ™āđ€āļŦāļĨāđ‡āļāđ€āļŠāļĢāļīāļĄāđāļšāļāļ—āļēāļ™āļ›āļĢāļ°āļāļ­āļšāļ”āđ‰āļ§āļĒāļāļēāļĢāđ€āļŠāļĢāļīāļĄāđ€āļŦāļĨāđ‡āļāđ€āļŠāļĢāļīāļĄāļ•āļēāļĄāļĒāļēāļ§ āļ‹āļķāđˆāļ‡āļ—āļģāļĄāļēāļˆāļēāļāđ€āļŦāļĨāđ‡āļāļ‚āđ‰āļ­āļ­āđ‰āļ­āļĒ āđāļĨāļ°āļŠāļļāļ”āļ‚āļ­āļ‡āđ€āļŦāļĨāđ‡āļāļ‰āļēāļāļ—āļĩāđˆāļ•āļīāļ”āļ•āļąāđ‰āļ‡āļšāļ™āđ€āļŦāļĨāđ‡āļāđ€āļŠāļĢāļīāļĄāļ•āļēāļĄāļĒāļēāļ§āđƒāļ™āļ—āļīāļĻāļ—āļēāļ‡āļ—āļĩāđˆāļ•āļąāđ‰āļ‡āļ‰āļēāļāļāļąāļ™ āļāļģāđāļžāļ‡āļāļąāļ™āļ”āļīāļ™āļ—āļĩāđˆāļ—āļģāļāļēāļĢāļĻāļķāļāļĐāļēāļŠāļĢāđ‰āļēāļ‡āļ‚āļķāđ‰āļ™āļ—āļĩāđˆāđ€āļŦāļĄāļ·āļ­āļ‡āđāļĄāđˆāđ€āļĄāļēāļ° āļˆāļąāļ‡āļŦāļ§āļąāļ”āļĨāļģāļ›āļēāļ‡ āļ•āļąāđ‰āļ‡āļ­āļĒāļđāđˆāļšāļĢāļīāđ€āļ§āļ“āļ”āđ‰āļēāļ™āļŦāļ™āđ‰āļēāđ€āļ™āļīāļ™āļ”āļīāļ™āļ—āļĩāđˆāļĄāļĩāļ„āļ§āļēāļĄāļŠāļąāļ™āļ›āļĢāļ°āļĄāļēāļ“ 48 āļ­āļ‡āļĻāļē āļāļģāđāļžāļ‡āļāļąāļ™āļ”āļīāļ™āļĄāļĩāļ„āļ§āļēāļĄāļāļ§āđ‰āļēāļ‡āđ€āļ—āđˆāļēāļāļąāļš 14.80 āđ€āļĄāļ•āļĢ āđāļĨāļ°āļĄāļĩāļ„āļ§āļēāļĄāļŠāļđāļ‡āđ€āļ—āđˆāļēāļāļąāļš 9.75 āđ€āļĄāļ•āļĢ āđ€āļŠāļĢāļīāļĄāļāļģāļĨāļąāļ‡āļ”āđ‰āļ§āļĒāđ€āļŦāļĨāđ‡āļāđ€āļŠāļĢāļīāļĄāđāļšāļāļ—āļēāļ™āļ—āļąāđ‰āļ‡ 3 āļ”āđ‰āļēāļ™āļ‚āļ­āļ‡āļāļģāđāļžāļ‡ āļˆāļģāļ™āļ§āļ™ 14 āļŠāļąāđ‰āļ™ āđƒāļŠāđ‰āļĢāļ°āļĒāļ°āđ€āļ§āļĨāļēāļāđˆāļ­āļŠāļĢāđ‰āļēāļ‡āļ—āļąāđ‰āļ‡āļŠāļīāđ‰āļ™ 20 āļ§āļąāļ™ āļ‹āļķāđˆāļ‡āļāļēāļĢāļ„āļģāļ™āļ§āļ“āđ€āļžāļ·āđˆāļ­āđ€āļ›āļĢāļĩāļĒāļšāđ€āļ—āļĩāļĒāļšāļžāļĪāļ•āļīāļāļĢāļĢāļĄāļ‚āļ­āļ‡āļāļģāđāļžāļ‡āļāļąāļ™āļ”āļīāļ™āļ”āđ‰āļ§āļĒāļĢāļđāļ›āđāļšāļš 2 āļĄāļīāļ•āļī āļ­āļēāļˆ āđ„āļĄāđˆāđ€āļŦāļĄāļēāļ°āļŠāļĄ āļ‡āļēāļ™āļ§āļīāļˆāļąāļĒāļ™āļĩāđ‰āđ„āļ”āđ‰āļ”āļģāđ€āļ™āļīāļ™āļāļēāļĢāļĻāļķāļāļĐāļēāđ€āļ›āļĢāļĩāļĒāļšāđ€āļ—āļĩāļĒāļšāļœāļĨāļ•āļĢāļ§āļˆāļ§āļąāļ”āļˆāļĢāļīāļ‡āļ—āļĩāđˆāđ€āļāļīāļ”āļ‚āļķāđ‰āļ™āđƒāļ™āļŠāļ™āļēāļĄ āļāļąāļšāļžāļĪāļ•āļīāļāļĢāļĢāļĄāļ—āļĩāđˆāđ„āļ”āđ‰āļˆāļēāļāļāļēāļĢāļ§āļīāđ€āļ„āļĢāļēāļ°āļŦāđŒāļ”āđ‰āļ§āļĒāļ§āļīāļ˜āļĩāđ„āļŸāđ„āļ™āļ•āđŒāļ­āļīāļĨāļīāđ€āļĄāļ™āļ•āđŒāđāļšāļš 3 āļĄāļīāļ•āļī āđ‚āļ”āļĒāđ‚āļ›āļĢāđāļāļĢāļĄ PLAXIS 3D āļšāļ—āļ„āļ§āļēāļĄāļ™āļĩāđ‰āļ™āļģāđ€āļŠāļ™āļ­āļžāļĪāļ•āļīāļāļĢāļĢāļĄāļ‚āļ­āļ‡āļāļģāđāļžāļ‡āļāļąāļ™āļ”āļīāļ™ āļ‹āļķāđˆāļ‡āļ›āļĢāļ°āļāļ­āļšāļ”āđ‰āļ§āļĒ āļāļēāļĢāļ—āļĢāļļāļ”āļ•āļąāļ§āđƒāļ™āđāļ™āļ§āļ”āļīāđˆāļ‡āļ‚āļ­āļ‡āļ”āļīāļ™āļ–āļĄ āļ—āļĩāđˆāļ•āļĢāļ§āļˆāļ§āļąāļ”āđ‚āļ”āļĒ Settlement plate, āļāļēāļĢāđ€āļ„āļĨāļ·āđˆāļ­āļ™āļ•āļąāļ§āļ”āđ‰āļēāļ™āļ‚āđ‰āļēāļ‡ āļ•āļĢāļ§āļˆāļ§āļąāļ”āđ‚āļ”āļĒ Inclinometer āđāļĨāļ°āđāļĢāļ‡āļ”āļķāļ‡āđƒāļ™āđ€āļŦāļĨāđ‡āļāđ€āļŠāļĢāļīāļĄāđāļšāļāļ—āļēāļ™ āđ„āļ”āđ‰āļˆāļēāļāļāļēāļĢāļ•āļĢāļ§āļˆāļ§āļąāļ”āđ‚āļ”āļĒāđƒāļŠāđ‰āđ€āļāļˆāļ§āļąāļ”āļ„āļ§āļēāļĄāđ€āļ„āļĢāļĩāļĒāļ” āđƒāļ™ 3 āļŠāļ āļēāļ§āļ° āđ„āļ”āđ‰āđāļāđˆ āļŦāļĨāļąāļ‡āļŠāļīāđ‰āļ™āļŠāļļāļ”āļāļēāļĢāļāđˆāļ­āļŠāļĢāđ‰āļēāļ‡ āļāļēāļĢāļ•āļīāļ”āļ•āļąāđ‰āļ‡āļ—āđˆāļēāđ€āļ—āļĩāļĒāļšāļĢāļ–āļšāļĢāļĢāļ—āļļāļÂ  āđāļĨāļ°āļ‚āļ“āļ°āđ€āļ›āļīāļ”āđƒāļŠāđ‰āļ‡āļē

    Critique on the Conceptual Developments of Innovative Practices with Lightweight Fills

    No full text
    Conceptual developments are underpinned by the intellectual process of constant reviewing and developing innovative research ideas into realistic design. There exists no one quick fix, fit for purpose solution to ensure stability of structures being constructed on a wide range of demanding ground conditions and variety of project constraints. Routine highway design and construction technology conformingly adopt only conventional fill methods and thus fail even to address adequately the less favoured conditions in challenging situations: a high initial construction cost arising from a full replacement of existing unfavourable soil conditions or an unsustainable construction design leading to a condition of rapid disintegration requiring regular expensive and disruptive highway maintenance activity. Undulating road embankment surfaces result from the transference of heavy self-weight of the embankment fill on yielding and non-uniform subgrade such as in peat soils. The Manitoba Water Services Board [1] specifies four classes of fills (viz; common, compacted common, compacted select granular backfill and unshrinkable backfill) for backfilling of pipeline trenches. Both conventional and alternatively sustainable backfills are discussed in this paper with new and appropriate technology opening doors with other tangible benefits for innovative and cost saving outcomes for differing construction scenarios

    Marginal lateritic soil/crushed slag blends as an engineering fill material

    No full text
    Lateritic soil (LS) with suitable mechanical properties is commonly used as the subbase and as engineering fill material in roads. However, LS is becoming increasingly scarce as a source for road projects. The usage of marginal LS as a pavement subbase and engineering fill material leads to some challenging issues that this research seeks to address. This paper evaluates the possibility of using crushed slag (CS), a waste by-product, as a replacement material to stabilize marginal LS for engineering fill applications. An investigation was undertaken on the physical and mechanical properties of the LS/CS blends at various CS replacement contents. The laboratory evaluation program included particle size distribution, specific gravity, water absorption, Los Angeles (LA) abrasion, Atterberg limit, California Bearing Ratio (CBR) and swelling tests. CS replacement was found to reduce the fine content and increase the abrasion resistance of the marginal LS, resulting in a reduction in liquid limit, plasticity index, LA abrasion and particle breakage. With increases in the CS replacement content, a marked improvement in the physical properties of the blends was found, including increased soaked CBR and reduced swelling. Normalized CBRCS /CBR0 and SCS /S0 and CS replacement relationships were developed in this research. CBRCS and SCS are the CBR and swelling values at various CS replacement contents, respectively and CBR0 and S0 are the CBR0 and swelling values at a 0% CS replacement content, respectively. The results are expected to be of interest to both geotechnical and pavement practitioners. The physical and mechanical properties of the blends with a minimum of 10% CS replacement content were found to meet the national local road authority requirements for engineering fill material

    Fly ash based geopolymer stabilisation of silty clay/blast furnace slag for subgrade applications

    No full text
    The mechanical and microstructural properties of problematic silty clay (SC) stabilised with fly ash (FA) based geopolymer and blast furnace slag (BFS) replacement are presented in this research. The influence factors evaluated included FA:BFS replacement ratio, NaOH concentration, and curing temperature. A series of geotechnical laboratory tests and microstructural analyses were also undertaken. The strength of the stabilised material was found to be governed by interparticle forces, mainly from the contribution of the chemical bonding strength. The results indicated that the unconfined compression strength (UCS) values of FA based geopolymers stabilised with SC/BFS blends increased with increasing NaOH concentration, at the various FA:BFS replacement ratios when cured at various temperatures (25, 50 and 80°C). The high concentration of NaOH could dissolve FA particles to leach silica and alumina which reacted with NaOH to produce a geopolymerization (N-A-S-H gel) process, which resulted in high UCS results. The decrease in FA:BFS ratio however reduced the specific area of particles to be welded by FA geopolymerization products and reduces the geopolymer gel due to the reduction in quantity of FA precursor. As such, the interparticle forces increased as the FA:BFS reduced up to the optimum value and then decreased as the FA:BFS reduced. The optimal FA:BFS ratio was found to be 20:10. An elevated curing temperature accelerated the geopolymerization reaction, leading to the higher UCS at higher temperature. The use of waste by-products BFS and FA to stabilise problematic soil in civil engineering applications will contribute to a significant reduction in construction costs and the sustainable development of the project life cycles

    Environmental assessment of cement-stabilised lateritic soil/melamine debris for Thailand’s pavement

    No full text
    Mirzababaei, M ORCiD: 0000-0002-4801-8811Increased utilisation of melamine products has resulted in large quantities of melamine debris (MD) being stockpiled annually in landfills. In this research, MD was partially replaced with marginal lateritic soil (LS) to develop non-hazardous cement (C)-stabilised pavement sub-base and sub-grade materials. The 7 d unconfined compressive strength values of 3% C-stabilised 80% LS/20% MD blend and 5% C-stabilised 80% LS/20% MD blend met the strength requirement for sub-grade and sub-base materials, as specified by the Department of Highways, Thailand. The leachability of the heavy metals of the C-stabilised LS/MD blends was measured and compared with international standards. The leachate results indicated that the C-stabilised LS/MD blends can be safely used in sustainable pavement applications, as the leachate heavy metal concentrations were within acceptable ranges. The outcome of this study will promote the usage of waste MD in an environmentally friendly manner in pavement construction applications

    Generalized Interface Shear Strength Equation for Recycled Materials Reinforced with Geogrids

    No full text
    In this research, large direct shear tests were conducted to evaluate the interface shear strength between reclaimed asphalt pavement (RAP) and kenaf geogrid (RAP–geogrid) and to also assess their viability as an environmentally friendly base course material. The influence of factors such as the gradation of RAP particles and aperture sizes of geogrid (D) on interface shear strength of the RAP–geogrid interface was evaluated under different normal stresses. A critical analysis was conducted on the present and previous test data on geogrids reinforced recycled materials. The D/FD, in which FD is the recycled materials’ particle content finer than the aperture of geogrid, was proposed as a prime parameter governing the interface shear strength. A generalized equation was proposed for predicting the interface shear strength of the form: α = a(D/FD) + b, where α is the interface shear strength coefficient, which is the ratio of the interface shear strength to the shear strength of recycled material, and a and b are constants. The constant values of a and b were found to be dependent upon types of recycled material, irrespective of types of geogrids. A stepwise procedure to determine variable a, which is required for analysis and design of geogrids reinforced recycled materials in roads with various gradations was also suggested
    corecore