24 research outputs found

    R2L: Distilling Neural Radiance Field to Neural Light Field for Efficient Novel View Synthesis

    Full text link
    Recent research explosion on Neural Radiance Field (NeRF) shows the encouraging potential to represent complex scenes with neural networks. One major drawback of NeRF is its prohibitive inference time: Rendering a single pixel requires querying the NeRF network hundreds of times. To resolve it, existing efforts mainly attempt to reduce the number of required sampled points. However, the problem of iterative sampling still exists. On the other hand, Neural Light Field (NeLF) presents a more straightforward representation over NeRF in novel view synthesis -- the rendering of a pixel amounts to one single forward pass without ray-marching. In this work, we present a deep residual MLP network (88 layers) to effectively learn the light field. We show the key to successfully learning such a deep NeLF network is to have sufficient data, for which we transfer the knowledge from a pre-trained NeRF model via data distillation. Extensive experiments on both synthetic and real-world scenes show the merits of our method over other counterpart algorithms. On the synthetic scenes, we achieve 26-35x FLOPs reduction (per camera ray) and 28-31x runtime speedup, meanwhile delivering significantly better (1.4-2.8 dB average PSNR improvement) rendering quality than NeRF without any customized implementation tricks.Comment: Project: https://snap-research.github.io/R2

    Intestinal Absorption and First-Pass Metabolism of Polyphenol Compounds in Rat and Their Transport Dynamics in Caco-2 Cells

    Get PDF
    <div><h3>Background</h3><p>Polyphenols, a group of complex naturally occurring compounds, are widely distributed throughout the plant kingdom and are therefore readily consumed by humans. The relationship between their chemical structure and intestinal absorption, transport, and first-pass metabolism remains unresolved, however.</p> <h3>Methods</h3><p>Here, we investigated the intestinal absorption and first-pass metabolism of four polyphenol compounds, apigenin, resveratrol, emodin and chrysophanol, using the <em>in vitro</em> Caco-2 cell monolayer model system and <em>in situ</em> intestinal perfusion and <em>in vivo</em> pharmacokinetic studies in rats, so as to better understand the relationship between the chemical structure and biological fate of the dietary polyphenols.</p> <h3>Conclusion</h3><p>After oral administration, emodin and chrysophanol exhibited different absorptive and metabolic behaviours compared to apigenin and resveratrol. The differences in their chemical structures presumably resulted in differing affinities for drug-metabolizing enzymes, such as glucuronidase and sulphatase, and transporters, such as MRP2, SGLT1, and P-glycoprotein, which are found in intestinal epithelial cells.</p> </div

    Dynamic Mechanical Behavior of Hierarchical Resin Honeycomb by 3D Printing

    No full text
    In this paper, surface projection micron stereo-lithography technology (P&mu;SL) by 3D printing was used to prepare two resin honeycomb materials with different levels, and the mechanical behavior of these materials was studied. The quasi-static compression experiment and the dynamic compression experiment were carried out on the samples using the in situ micro-compression testing machine and the Split Hopkinson bar (SHPB) experimental equipment. The stress&ndash;strain curves of these materials at different strain rates were obtained, and the energy absorption characteristic of materials with two different levels were analyzed. This article reveals that the collapse strength and energy absorption properties of the materials are related to the hierarchical level of honeycomb. Multi-level hierarchical honeycomb (MHH) has higher collapse strength and better energy absorption properties than single-level hierarchical honeycomb (SHH). It turned out that increasing the hierarchical level of honeycomb could improve the mechanical properties of the materials. In the future development of products, the mechanical properties of hierarchical material by 3D printing can be further optimized through changing the level of the fractal structure

    5α-Hydroxycostic acid inhibits choroidal neovascularization in rats through a dual signalling pathway mediated by VEGF and angiopoietin 2

    No full text
    Abstract Background 5α-Hydroxycostic acid is a eudemane sesquiterpene that is isolated from the natural plant, Laggera alata. It exerts anti-inflammatory and anti-angiogenic effects on human breast cancer cells, but its role and underlying mechanism in choroidal neovascularization (CNV) are still unclear. We conducted a study to verify that 5α-Hydroxycostic acid can inhibit the formation and leakage of CNV, and describe the possible dual pathway by which it exerts its inhibitory effects in this process. Methods An in vitro model of choroidal neovascularization was established using VEGF164, while a rat model of choroidal neovascularization was established using a 532 nm laser. In both models, the effects of 5α-Hydroxycostic acid in vivo and in vitro were evaluated to determine its inhibitory effect on abnormal cell proliferation, migration and tubule formation, as well as its effect on pathological changes in choroidal tissues and the area of neovascularization leakage in rats. The levels of components in the VEGF/VEGFR and Ang2/Tie2 signaling pathways were measured in tissues and cells. Results In vitro experiments have shown that 5α-Hydroxycostic acid can inhibit abnormal cell proliferation, migration and angiogenesis. Additionally, 5α-Hydroxycostic acid enhances cell adhesion by inhibiting the phosphorylation pathways of VEGFR2 and Tie2. In vivo experiments demonstrated that 5α-Hydroxycostic acid has a positive therapeutic effect on choroidal neovascularization in rats. It can effectively reduce vascular leakage, consistent with the results of the cell experiments. Conclusion 5α-Hydroxycostic acid can inhibit choroidal neovascularization by interfering with the VEGF- and Ang2/Tie2-related pathways, and it may be a good candidate drug for treating CNV

    Plasmons of topological crystalline insulator SnTe with nanostructured patterns

    No full text
    International audienceUsing the finite-difference time-domain method and density functional theory, we theoretically investigate the plasmons of topological crystalline insulator (TCI) SnTe with nanostructured patterns. Due to the fact that the topological material has an insulating bulk surrounded by topologically protected metallic surfaces, the TCI nanogratings are uniquely described by the core–shell-like model. In contrast to the plasmons of metallic nanoparticles usually found in visible spectra, four plasmon resonances excited on the TCI SnTe nanogratings are numerically observed in the visible-near-infrared (vis-NIR) spectral region, which is in agreement with the theoretical analyses. Furthermore, periodic shifts of resonance wavelengths are achieved with the variation of grating heights. The facile control of the plasmons of TCI nanopatterns in the vis-NIR spectral region may have potential applications in biomedicine, plasmonic nanodevices, and integrated optoelectronic circuits

    Glioma-targeted oxaliplatin/ferritin clathrate reversing the immunosuppressive microenvironment through hijacking Fe2+ and boosting Fenton reaction

    No full text
    Abstract Glioma is easy to develop resistance to temozolomide (TMZ). TMZ-resistant glioma secretes interleukin-10 (IL-10) and transforming growth factor-β (TGF-β), recruiting regulatory T cell (Treg) and inhibiting the activity of T cells and natural killer cell (NK cell), subsequently forming an immunosuppressive microenvironment. Oxaliplatin (OXA) greatly inhibits the proliferation of TMZ-resistant glioma cells, but the ability of OXA to cross blood–brain barrier (BBB) is weak. Thus, the therapeutic effect of OXA on glioma is not satisfactory. Transferrin receptor 1 (TfR1) is highly expressed in brain capillary endothelial cells and TMZ-resistant glioma cells. In this study, OXA was loaded into ferritin (Fn) to prepare glioma-targeted oxaliplatin/ferritin clathrate OXA@Fn. OXA@Fn efficiently crossed BBB and was actively taken up by TMZ-resistant glioma cells via TfR1. Then, OXA increased the intracellular H2O2 level and induced the apoptosis of TMZ-resistant glioma cells. Meanwhile, Fn increased Fe2+ level in TMZ-resistant glioma cells. In addition, the expression of ferroportin 1 was significantly reduced, resulting in Fe2+ to be locked up inside the TMZ-resistant glioma cells. This subsequently enhanced the Fenton reaction and boosted the ferroptosis of TMZ-resistant glioma cells. Consequently, T cell mediated anti-tumor immune response was strongly induced, and the immunosuppressive microenvironment was significantly reversed in TMZ-resistant glioma tissue. Ultimately, the growth and invasion of TMZ-resistant glioma was inhibited by OXA@Fn. OXA@Fn shows great potential in the treatment of TMZ-resistant glioma and prospect in clinical transformation. Graphical Abstrac

    In Vivo

    No full text

    Intracellular DOX levels assayed by LC/MS/MS.

    No full text
    <p>After treatment by PEG-DOX conjugates (20 µM DOX. Eq) or DOX in MDA-MB-231 (left), MCF-7 (middle) or HepG2 cells (right) for 2, 4 and 8 h respectively. (<sup>*</sup><i>p</i><0.05, <sup>**</sup><i>p</i><0.01, PEG-hyd-DOX <i>vs</i> DOX; <sup># </sup><i>p</i><0.05, PEG-hyd-DOX <i>vs</i> PEG-ami-DOX, n = 4, mean ± SD).</p

    Bio-distribution and accumulation of free DOX and PEG-hyd-DOX (5,10,15 mg/kg DOX. eq) in tissues.

    No full text
    <p>(a) free DOX, (b)PEG-hyd-DOX; cumulative accumulation of DOX in (c) tumor and (d) heart assayed by LC/MS/MS. (n = 5, mean ± SD).</p
    corecore