25 research outputs found

    Cross-comparison of Landsat-8 and Landsat-9 data: a three-level approach based on underfly images

    No full text
    ABSTRACTThe recently launched Landsat-9 has an important mission of working together with Landsat-8 to reduce the revisit period of Landsat Earth observations to eight days. This requires the data of Landsat-9 to be highly consistent with that of Landsat-8 to avoid bias caused by data inconsistency when the two satellites are simultaneously used. Therefore, this study evaluated the consistency of the surface reflectance (SR) and land surface temperature (LST) data between Landsat-8 and Landsat-9 based on five test sites from different parts of the world using synchronized underfly image pairs of both satellites. Previous cross-comparisons have demonstrated high consistency between the spectral bands of Landsat-8 and Landsat-9, with differences of around 1%. However, it is unclear whether this low deviation will be amplified in subsequent multiband calculations. It is also necessary to determine whether the difference is consistent across different land cover types. Therefore, this study used a three-level cross-comparison approach to specifically examine these concerns. Besides the commonly used band-by-band comparison, which served as the first-level comparison in this study, this approach included a second-level comparison based on the calculations of several indicators and a third-level comparison based on a composite index calculated from the indicators obtained in the second-level comparison. This three-level approach will examine whether the difference found in the first-level per-band comparison would change after the subsequent calculations in the second- and third-level comparisons. The Remote Sensing based Ecological Index (RSEI) was used for this approach because it is a composite index integrating four indicators. The results of this three-level comparison show that the first-level per-band comparison exhibited high consistency between the two satellites’ SR data, with an average absolute percent change (PC) of 1.88% and an average R2 of 0.957 across six bands in the five test sites. This deviation increased to 2.21% in the third-level composite index-based comparison, with R2 decreasing to 0.956. This indicates that after complex calculations, the deviation between the bands of the two satellites was amplified to some extent. However, when analyzing specific land cover types, notable differences emerged between the two satellites for the water category, with an average absolute PC ranging from 18% to 35% and an R2 of lower than 0.6. Additionally, there were also nearly 5% differences for the built-up land category, with an average R2 value of lower than 0.7. The comparison of LST data between both satellites also reveals that the Landsat-9 LST is on average 0.24°C lower than Landsat-8 LST across the five test areas but can be 0.58°C lower in built-up land-dominated areas and 0.42°C higher in desert environments. Overall, the SR and LST data between Landsat-8 and Landsat-9 are consistent. However, their performance varies depending on different land cover types. Caution is needed particularly for water-related research when utilizing both satellites simultaneously. Significant discrepancies may also arise in the areas characterized by deserts and built-up lands

    RSEI or MRSEI? Comment on Jia et al. Evaluation of Eco-Environmental Quality in Qaidam Basin Based on the Ecological Index (MRSEI) and GEE. <i>Remote Sens.</i> 2021, <i>13</i>, 4543

    No full text
    Recently, Jia et al. employed the index, modified remote sensing ecological index (MRSEI), to evaluate the ecological quality of the Qaidam Basin, China. The MRSEI made a modification to the previous remote sensing-based ecological index (RSEI), which is a frequently used remote sensing technique for evaluating regional ecological status. Based on the investigation of the ecological implications of the three principal components (PCs) derived from the principal component analysis (PCA) and the case study of the Qaidam Basin, this comment analyzed the rationality of the modification made to RSEI by MRSEI and compared MRSEI with RSEI. The analysis of the three PCs shows that the first principal component (PC1) has clear ecological implications, whereas the second principal component (PC2) and the third principal component (PC3) have not. Therefore, RSEI can only be constructed with PC1. However, MRSEI unreasonably added PC2 and PC3 into PC1 to construct the index. This resulted in the interference of each principal component. The addition also significantly reduced the weight of PC1 in the computation of MRSEI. The comparison results show that MRSEI does not improve RSEI, but causes the overestimation of the ecological quality of the Qaidam Basin. Therefore, the modification made by MRSEI is questionable and MRSEI is not recommended to be used for regional ecological quality evaluation

    RSEI or MRSEI? Comment on Jia et al. Evaluation of Eco-Environmental Quality in Qaidam Basin Based on the Ecological Index (MRSEI) and GEE. Remote Sens. 2021, 13, 4543

    No full text
    Recently, Jia et al. employed the index, modified remote sensing ecological index (MRSEI), to evaluate the ecological quality of the Qaidam Basin, China. The MRSEI made a modification to the previous remote sensing-based ecological index (RSEI), which is a frequently used remote sensing technique for evaluating regional ecological status. Based on the investigation of the ecological implications of the three principal components (PCs) derived from the principal component analysis (PCA) and the case study of the Qaidam Basin, this comment analyzed the rationality of the modification made to RSEI by MRSEI and compared MRSEI with RSEI. The analysis of the three PCs shows that the first principal component (PC1) has clear ecological implications, whereas the second principal component (PC2) and the third principal component (PC3) have not. Therefore, RSEI can only be constructed with PC1. However, MRSEI unreasonably added PC2 and PC3 into PC1 to construct the index. This resulted in the interference of each principal component. The addition also significantly reduced the weight of PC1 in the computation of MRSEI. The comparison results show that MRSEI does not improve RSEI, but causes the overestimation of the ecological quality of the Qaidam Basin. Therefore, the modification made by MRSEI is questionable and MRSEI is not recommended to be used for regional ecological quality evaluation

    HIGH CIRCULATING LEVEL OF FIBROBLAST GROWHT FACTOR-23 PROMOTES RENAL EXCRETION OF PHOSPHATE IN HEMODIALYSIS PATIENTS WITH RESIDUAL RENAL FUNCTION

    Get PDF
    Fibroblast growth factor-23 (FGF-23) regulates phosphate metabolism and elevated levels occur in patients with kidney disease and are associated with smortality in maintenance hemodialysis (MHD) patients. Residual renal function (RRF) presumably improves phosphate metabolism in MHD patients. We investigated the role of circulating FGF-23 on urinary phosphate excretion and phosphate balance in 134 MHD patients. Demographics, laboratory data, and excretion capacity of phosphate were recorded. We used multivariable regression to analyze the relationship of serum phosphate with other factors and of the tubular reabsorption rate of phosphate with other factors. Patients with high urinary output (>200 mL/day) had lower serum phosphate, calcium, iPTH, and FGF-23 than patients with low urinary output (< 200 mL/day). The independent risk factors for elevated serum phosphate were nPNA, iPTH, and FGF-23 in patients with low urinary output, and female gender and GFR in patients with high urinary output. In high urinary output patients, the weekly phosphate excretion was 300 to 1500 mg, the renal contribution to weekly phosphate elimination was about 15% when GFR < 2 mL/min, 25% when 2≤ GFR < 5 mL/min, and 40% when GFR ≥ 5 mL/min. The tubular reabsorption of phosphate (44% ± 19%) was nearly 50% of the normal level, much lower than that of sodium, chlorine, and calcium which ranged from 85% to 99%. Elevated circulating FGF-23 was significantly associated with decreased tubular phosphate reabsorption after adjusting for GFR and serum phosphate (β=-0.147, p=0.003). In conclusion, RRF is associated with significant capacity to excrete phosphate and high levels of FGF-23 promote phosphate excretion in remnant nephrons

    CircXRN2 suppresses tumor progression driven by histone lactylation through activating the Hippo pathway in human bladder cancer

    No full text
    Abstract Background Bladder cancer (BCa) is the fourth most common malignant tumor with a poor prognosis worldwide. Further exploration and research are needed to unmask the underlying roles and molecular mechanisms of circular RNAs. In the current study, our findings showed that circXRN2 suppresses tumor progression driven by histone lactylation by activating the Hippo pathway in human bladder cancer. Methods RNA immunoprecipitation (RIP) followed by circRNA sequencing confirmed circXRN2 as the research object. Overexpression of circXRN2 and knockdown of TAZ/YAP further verified the biological functions in T24 and TCCSUP cells. RIP, immunoprecipitation and coimmunoprecipitation were used to elucidate the interaction between circXRN2 and LATS1. A Seahorse metabolic analyzer was used to determine the glycolytic rate. Cleavage under targets and Tagmentation (CUT&Tag) and chromatin immunoprecipitation (ChIP) were employed to ensure the regulatory roles of H3K18 lactylation in the transcriptional activity of LCN2. Results CircXRN2 is aberrantly downregulated in bladder cancer tissues and cell lines. CircXRN2 inhibits the proliferation and migration of tumor cells both in vitro and in vivo. In addition, circXRN2 serves as a negative regulator of glycolysis and lactate production. Mechanistically, circXRN2 prevents LATS1 from SPOP-mediated degradation by binding to the SPOP degron and then activates the Hippo signaling pathway to exert various biological functions. The circXRN2-Hippo pathway regulatory axis further modulates tumor progression by inhibiting H3K18 lactylation and LCN2 expression in human bladder cancer. Conclusions CircXRN2 suppresses tumor progression driven by H3K18 lactylation by activating the Hippo signaling pathway in human bladder cancer. Our results indicated novel therapeutic targets and provided promising strategies for clinical intervention in human bladder cancer
    corecore