147 research outputs found

    The association between coffee consumption and type 2 diabetes in women

    Get PDF
    Diabetes is a worldwide chronic disease that affected many people’s lives, it is a preventable disease that has a great association with people’s lifestyles and diets. Coffee was a common beverage that emerged in people’s lives and was favoured by many people. With the popularity of coffee, the health effects of drinking coffee are also taken into account in many research studies. The article investigates whether the consumption of coffee will reduce the risk of Type 2 diabetes among women to fill the gap of specific sex studies. Three studies were examined and compared to support the idea that coffee consumption lowered the risk of type two diabetes in women.

    Valley-Hall photonic topological insulators with dual-band kink states

    Full text link
    Extensive researches have revealed that valley, a binary degree of freedom (DOF), can be an excellent candidate of information carrier. Recently, valley DOF has been introduced into photonic systems, and several valley-Hall photonic topological insulators (PTIs) have been experimentally demonstrated. However, in the previous valley-Hall PTIs, topological kink states only work at a single frequency band, which limits potential applications in multiband waveguides, filters, communications, and so on. To overcome this challenge, here we experimentally demonstrate a valley-Hall PTI, where the topological kink states exist at two separated frequency bands, in a microwave substrate-integrated circuitry. Both the simulated and experimental results demonstrate the dual-band valley-Hall topological kink states are robust against the sharp bends of the internal domain wall with negligible inter-valley scattering. Our work may pave the way for multi-channel substrate-integrated photonic devices with high efficiency and high capacity for information communications and processing

    Realization of a three-dimensional photonic topological insulator

    Full text link
    Confining photons in a finite volume is in high demand in modern photonic devices. This motivated decades ago the invention of photonic crystals, featured with a photonic bandgap forbidding light propagation in all directions. Recently, inspired by the discoveries of topological insulators (TIs), the confinement of photons with topological protection has been demonstrated in two-dimensional (2D) photonic structures known as photonic TIs, with promising applications in topological lasers and robust optical delay lines. However, a fully three-dimensional (3D) topological photonic bandgap has never before been achieved. Here, we experimentally demonstrate a 3D photonic TI with an extremely wide (> 25% bandwidth) 3D topological bandgap. The sample consists of split-ring resonators (SRRs) with strong magneto-electric coupling and behaves as a 'weak TI', or a stack of 2D quantum spin Hall insulators. Using direct field measurements, we map out both the gapped bulk bandstructure and the Dirac-like dispersion of the photonic surface states, and demonstrate robust photonic propagation along a non-planar surface. Our work extends the family of 3D TIs from fermions to bosons and paves the way for applications in topological photonic cavities, circuits, and lasers in 3D geometries

    Inhibition of miR-665 alleviates neuropathic pain by targeting SOCS1

    Get PDF
    Purpose: To investigate the effect of miR-665 in neuropathic pain and the possible molecular mechanism involved.Methods: A neuropathic pain model was established using chronic constriction injury (CCI) methods in Sprague Dawley (SD) rats. Mechanical and thermal hyperalgesia were measured using paw withdrawal threshold (PWT) and paw withdrawal latency (PWL), respectively. The inflammation response was determined by assessing the production of inflammation factors. The target relationship of miR-665 and suppressor of cytokine signaling 1 (SOCS1) was verified by luciferase assay.Results: In the CCI rat model, PWT and PWL decreased following treatment with miR-665 (p < 0.01). MiR-665 was elevated in the spinal cord and microglia of CCI rats at different time points (p < 0.01). Down-regulation of miR-665 increased PWT and PWL and inhibited the production of interleukin (IL)-1β, IL-6, and tumor necrosis factor (TNF)-α in CCI rats (p < 0.01). Luciferase assay results indicate that SOCS1 was the target of miR-665 (p < 0.01). SOCS1 decreased in CCI rats (p < 0.01) after treatment with miR-665. MiR-665 negatively regulated the expression of SOCS1 (p < 0.01). Down-regulation of SOCS1 reversed the alleviating effect of decreased miR-665 on pain sensitivity and inflammationresponse (p < 0.01).Conclusion: Down-regulation of miR-665 alleviates neuropathic pain by targeting SOCS1, and hence making miR-665 a promising therapeutic target for neuropathic pain. Keywords: MiR-665, SOCS1, Neuropathic pain, CCI, Spinal cor
    • …
    corecore