63 research outputs found
Performance assessment of drought tolerant maize hybrids under combined drought and heat stress
Open Access Journal; Published online: 22 Nov 2018Drought and high temperature are two major factors limiting maize productivity in sub-Saharan Africa. An increase in temperature above 30 °C reduces yield by 1% under optimal rain-fed condition and by 1.7% under drought stress (DS) and up to 40% under combined drought and heat stress (DSHTS). Approaches that improve performance under the two stresses are essential to sustain productivity. The objectives of this study were to (i) assess the extent of variation in tolerance to DSHTS from among the existing best drought tolerant (DT) hybrids; (ii) examine the response patterns of the hybrids to DSHTS; (iii) identify traits that contributed to better performance under DSHTS; and (iv) select the best hybrids with tolerance to DSHTS stress. We evaluated 40 DT hybrids under DSHTS, DS, and well-watered (WW) conditions for three years. Highly significant (p < 0.001) differences were found among hybrids for grain yield and other traits. Moderately to low repeatability values were detected for grain yield under DS (0.63) and under DSHTS (0.48). Grain yield under DS was not correlated with grain yield under DSHTS (r = 0.29; p = 0.06), but it was correlated with grain yield under WW (r = 0.74; p < 0.001). Grain yield was strongly correlated with ears per plant, ear and pant aspects, days to anthesis and silking under both DS and DSHTS. Tassel blast accounted for 28% of the yield reduction under DSHTS. The top five DT hybrids produced 9 to 26% more grain yields than the best commercial hybrid. Three hybrids produced high grain yields under DTHTS and DS as well as under WW. These hybrids will be tested further in collaboration with partners for possible release
Identifying suitable tester for evaluating Striga resistant lines using DArTseq markers and agronomic traits
Open Access Journal; Published online: 18 June 2021A desirable tester that elicits greater genetic difference in Striga resistance among test crosses in a breeding program has not been reported. Therefore, this study was conducted to characterize 30 Striga resistant yellow endosperm maize inbred lines and three testers with varying resistance levels to Striga using DArTseq SNP markers and agronomic traits to identify a suitable tester for resistance hybrid breeding. Marker-based and agronomic trait-based genetic distances were estimated for yellow endosperm maize inbred lines and testers with varying resistance levels to Striga. The Marker-based cluster analysis separated the Striga resistant lines and testers into two distinct groups. Although the susceptible tester (T3) was the most distantly related to the 30 Striga resistant inbred lines, it exhibited a narrower range in genetic distance estimates and poor agronomic performance under Striga infestation in crosses with the resistant lines. In contrast, the resistant tester (T2) showed a broader range in genetic distance estimates in pairs with the 30 resistant lines. Also, it formed many high yielding hybrids with desirable traits under parasite pressure. Furthermore, the most significant positive association between agronomic trait-based and marker-based distance estimates (r = 0.389, P = 0.01) was observed when T2 has paired with the Striga resistant maize inbred lines. It thus appears that T2 may be used as a suitable tester to determine the breeding value of lines in hybrid maize resistance breeding programs. T2 was the most suitable tester, with a tolerant tester (T1) as an alternative tester to characterize the combining ability of Striga resistant maize inbred lines. This result can also encourage other breeders to investigate testers relative discriminating ability with varying levels of resistance in hybrid breeding for resistance to diseases, pests, and other parasitic plants
Effectiveness of yellow maize testers with varying resistance reactions to Striga hermonthica for evaluating the combining ability of maize inbred lines
Open Access Journal; Published online: 28 Aug 2020The choice of an appropriate tester is important for success in resistance hybrid breeding programs. Limited information is available on the most suitable testers that allow the selection of yellow endosperm maize inbred lines with good combining ability for resistance to witchweed (Striga hermonthica) and superior agronomic performance in hybrids targeted to areas infested with the parasite. Testcrosses of 30 Striga-resistant yellow endosperm maize inbred lines with three testers having varying levels of resistance to S. hermonthica were evaluated at Abuja and Mokwa in Nigeria under Striga-infested and non-infested conditions in 2018 and 2019. The lines Ă— tester interaction was significant for grain yield under Striga infestation, indicating that the performance lines in testcrosses varied with the testers. The respective average general combining ability effect of lines and testers was 1.5 and 32.4 times greater than the corresponding specific combining ability effects under infestation, showing the greater importance of additive gene action controlling the performance of testcrosses under Striga infestation. The different testers exhibited a different capacity to discriminate among the test lines with the susceptible tester being the least effective. Most of the criteria used to determine the best tester favored the selection of the tolerant and resistant testers as promising candidates to identify superior Striga-resistant yellow endosperm inbred lines for the hybridization and development of resistant hybrids. The results of this study demonstrated that testers with a high frequency of desirable alleles were superior to the tester with a low frequency of favorable alleles in hybrid breeding programs for resistance to S. hermonthica
Marker based enrichment of provitamin A content in two tropical maize synthetics
Open Access Journal; Published online: 22 July 2021Most of the maize (Zea mays L.) varieties in developing countries have low content of micronutrients including vitamin A. As a result, people who are largely dependent on cereal-based diets suffer from health challenges due to micronutrient deficiencies. Marker assisted recurrent selection (MARS), which increases the frequency of favorable alleles with advances in selection cycle, could be used to enhance the provitamin A (PVA) content of maize. This study was carried out to determine changes in levels of PVA carotenoids and genetic diversity in two maize synthetics that were subjected to two cycles of MARS. The two populations, known as HGA and HGB, and their advanced selection cycles (C1 and C2) were evaluated at Ibadan in Nigeria. Selection increased the concentrations of β-carotene, PVA and total carotenoids across cycles in HGA, while in HGB only α-carotene increased with advances in selection cycle. β-cryptoxanthine increased at C1 but decreased at C2 in HGB. The levels of β-carotene, PVA, and total carotenoids increased by 40%, 30% and 36% respectively, in HGA after two cycles of selection. α-carotene and β-cryptoxanthine content improved by 20% and 5%, respectively after two cycles of selection in HGB. MARS caused changes in genetic diversity over selection cycles. Number of effective alleles and observed heterozygosity decreased with selection cycles, while expected heterozygosity increased at C1 and decreased at C2 in HGA. In HGB, number of effective alleles, observed and expected heterozygosity increased at C1 and decreased at C2. In both populations, fixation index increased after two cycle of selections. The greatest part of the genetic variability resides within the population accounting for 86% of the total genetic variance. In general, MARS effectively improved PVA carotenoid content. However, genetic diversity in the two synthetics declined after two cycles of selection
Suitability of testers to characterize provitamin a content and agronomic performance of tropical maize inbred lines
Open Access Journal; Published online: 08 Aug 2022Vitamin A deficiency poses health risks for children, pregnant women, and nursing mothers in sub-Saharan Africa (SSA) and Southeast Asia. Provitamin A–biofortified maize varieties can contribute to minimizing the adverse effects of vitamin A deficiency in areas where maize is a staple food crop. Identifying suitable testers is important to breed provitamin A–biofortified hybrid maize. This study was therefore conducted to 1) assess the suitability of maize inbred lines with contrasting levels of provitamin A (one with high and one with low provitamin A concentration) to assess the combining ability of maize inbred lines in accumulating provitamin A and other carotenoids, and grain yield, 2) confirm the mode of inheritance of provitamin A and grain yield, and 3) identify promising inbred lines with desirable combining ability effects for use to
develop high-yielding provitamin A–biofortified hybrids. The inbreds crossed to the two inbred testers were evaluated in four environments for the carotenoid content and eight environments for the agronomic performance. The combined analysis of variance revealed a significant genetic variation among the testcrosses for all carotenoids, grain yield, and other agronomic traits. The mode of inheritance for grain yield, other agronomic traits, provitamin A, and other carotenoids was regulated by both additive and
non-additive gene effects with a prominence of additive gene effects. The high provitamin A tester that displayed positive GCA effects for β-carotene and provitamin A content, broader agronomic performance of testcrosses, and higher levels of provitamin A in testcrosses can be considered suitable for breeding programs developing provitamin A–biofortified hybrids. The inbred lines TZI2012, TZI2142, TZI2130, TZI2065-2, TZI2161, TZI2025, TZI1278, TZI1314, TZI1304, and TZI2032 with positive GCA effects for grain yield and provitamin A content could be used as parental lines to develop source population of new inbred lines and high-yielding hybrids with elevated levels of provitamin A. The best performing hybrids are promising for release as highyielding provitamin A maize hybrids after further evaluations
Reactions of provitamin‑A‑enriched maize to foliar diseases under field conditions in Nigeria
Open Access ArticleMaize is a major staple food in Sub-Saharan Africa (SSA). Vitamin A deficiency index is high in Africa and could be reduced through the consumption of provitamin-A-enriched maize. However, foliar diseases such as maize streak virus, northern corn leaf blight and common rust constrain maize production in SSA. The cultivation of host-resistant varieties is the most effective approach to mitigate their effects. Therefore, maize synthetics improved for PVA carotenoids, their selection cycles and crosses as well as a commercial disease-resistant check were assessed for resistance to maize streak virus, northern corn leaf blight and common rust at hotspots in Nigeria. The foliar diseases’ effects on the agronomic performance and carotenoid content of the maize genotypes were assessed. The Genotypes differed for most agronomic traits and foliar disease resistance. Stepwise regression revealed that, although the agronomic traits determined 93% of the grain yield, each foliar disease had effect on the yield. A unit increase in maize streak virus score increased plant aspect and husk cover scores by 0.6 and 0.4, respectively, whereas an increase in common rust score decreased plant height by 16.2 cm and increased plant aspect score by 0.7. Maize streak virus and common rust decreased genotypic variability for lutein by 36.7 and 18.7%, respectively, while northern corn leaf blight decreased genotypic variability for provitamin A by 27.1%. Most of the genotypes exhibited moderate susceptibility to northern corn leaf blight. However, three selection cycles and three crosses exhibited high tolerance to maize streak virus and moderate tolerance to common rust, thus can serve as sources of PVA-enriched, maize streak virus and common rust tolerant lines
Agronomic performance and yield stability of extra-early maturing maize hybrids in multiple environments in the Sahel
Open Access JournalFrequent occurrence of drought, heat, low soil fertility and Striga infestation are the main stress factors reducing maize yield in the Sahel. Adoption of stable multiple stress tolerant maize cultivars in the region is crucial for achieving food security. However, selection of a stable high yielding cultivar is complicated by genotype Ă— environment interaction (GEI) due to differential responses to growing conditions. Eleven extra-early maturing multiple-stress tolerant maize hybrids and two checks arranged in a randomized complete block design was evaluated across nine locations for two years in Mali and Niger. The objectives of this study were to identify (i) stable and high-yielding maize hybrids, and (ii) suitable test locations for selecting promising extraearly maize hybrids. GGE biplot was used for graphical analysis. Significant genotype, location and GEI effects were detected for grain yield and number of ears per plant. EEWQH-13 produced the highest grain yield (3860 kg ha 1) while EEYQH-1 had the poorest yield (2663 kg ha 1) with trial mean of 3395 kg ha 1 for all hybrids. GGE biplot explained 69.6 % of the total variation in grain yield among the hybrids. The polygon view identified EEWQH-13 as the best hybrid across six of the nine test locations. EEPVAH-58 was identified as the most stable high yielding hybrid across the nine test locations followed by EEWQH-16 and EEWQH-13. The nine locations were clustered under two mega-environments (ME1, ME2). Among the nine test locations, Tara and Aderaoua clustered in ME1 were the most suitable ones for selecting promising extra-early maize
hybrids for wider adaptation. The three hybrids, EEPVAH-58, EEWQH-16, and EEWQH-13, identified in this study could be recommended for on-farm evaluation to confirm the consistency of their yield performance for possible release and commercialization in Mali and Niger
Comparative assessment of effectiveness of alternative genotyping assays for characterizing carotenoids accumulation in tropical maize inbred lines
Open Access Journal; Published online: 09 Oct 2021The development of maize varieties with increased concentration of Provitamin A (PVA) is an effective and affordable strategy to combat vitamin A deficiency in developing nations. However, the considerably high cost of carotene analysis poses a major challenge for maize PVA biofortification, prompting the use of marker-assisted selection. Presently, two types of genotyping with PVA trait-linked functional markers have been developed and extensively used in breeding programs. The two systems are low throughput gel-based genotyping and genotyping with Kompetitive Allele-Specific PCR (KASP) single nucleotide polymorphism (SNPs) markers. Although the KASP SNPs genotyping was developed to replace the gel-based genotyping, studies have not been conducted to compare the effectiveness of the KASP SNPs markers with the gel-based markers. This study was conducted to assess the carotenoid content of 64 tropical PVA biofortified maize inbred lines containing temperate germplasm in their genetic backgrounds and screen them with both gel-based and KASP markers of PSY1, LCYE and crtRB1 genes. Many of the 64 inbred lines had PVA concentrations surpassing the 15 µg/g provitamin A breeding target set by the HarvestPlus Challenge Program. Favorable alleles of crtRB1, crtRB1 and the KASP SNPs markers were detected in 25 inbred lines with high PVA concentrations. Inbred lines with the favorable alleles of LCYE had the highest concentrations of non-PVA carotenoids, whereas those with the favorable alleles of crtRB1 had high levels of PVA carotenoids. Data from the sequenced region of LCYE revealed one SNP in the first intron that clearly differentiated the high and low β-carotene maize inbred lines. The results of our study demonstrate that the automated KASP SNPs markers can replace the gel-based genotyping for screening a large number of early generation maize inbred lines for PVA content
Genetic diversity and population structure of maize inbred lines with varying levels of resistance to striga hermonthica using agronomic trait-based and SNP markers
Open Access Journal; Published online: 17 Sept 2020Striga hermonthica is a serious biotic stress limiting maize production in sub-Saharan Africa. The limited information on the patterns of genetic diversity among maize inbred lines derived from source germplasm with mixed genetic backgrounds limits the development of inbred lines, hybrids, and synthetics with durable resistance to S. hermonthica. This study was conducted to assess the level of genetic diversity in a panel of 150 diverse maize inbred lines using agronomic and molecular data and also to infer the population structure among the inbred lines. Ten Striga-resistance-related traits were used for the phenotypic characterization, and 16,735 high-quality single-nucleotide polymorphisms (SNPs), identified by genotyping-by-sequencing (GBS), were used for molecular diversity. The phenotypic and molecular hierarchical cluster analyses grouped the inbred lines into five clusters, respectively. However, the grouping patterns between the phenotypic and molecular hierarchical cluster analyses were inconsistent due to non-overlapping information between the phenotypic and molecular data. The correlation between the phenotypic and molecular diversity matrices was very low (0.001), which is in agreement with the inconsistencies observed between the clusters formed by the phenotypic and molecular diversity analyses. The joint phenotypic and genotypic diversity matrices grouped the inbred lines into three groups based on their reaction patterns to S. hermonthica, and this was able to exploit a broad estimate of the actual diversity among the inbred lines. The joint analysis shows an invaluable insight for measuring genetic diversity in the evaluated materials. The result indicates that wide genetic variability exists among the inbred lines and that the joint diversity analysis can be utilized to reliably assign the inbred lines into heterotic groups and also to enhance the level of resistance to Striga in new maize varieties
Drivers of transformation of the maize sector in Nigeria
Open Access ArticleMaize is widely used for food, animal feed, and industrial raw material in Nigeria. This paper documents the
important changes that characterize Nigeria’s maize production and area expansion along with contributing
factors that have transformed maize from a backyard food crop to a dominant food security and commercial crop. Using both secondary and primary data on maize production and varietal adoption over the last six decades, we found that Nigeria now produces ten times more maize than it did in 1960 and four times more maize than it did in 2005. Our findings further suggested that government policies and institutional arrangements that promoted access to and use of modern inputs and increased demand of maize grain for food, feed, and other industrial uses have played major roles in transforming maize from a backyard crop to a dominant staple and commercial crop in Nigeria. Considering the impeding climate change threats to food security in Nigeria, policy interventions should be tailored towards further scaling-up of stress resilient and climate-smart maize varieties to improve the productivity, income, and resilience of smallholder farmers. This requires strong support not only to get recently released superior improved varieties into the hands of smallholder farmers but also to accelerate varietal turnover
- …