38 research outputs found

    Altered Local and Large-Scale Dynamic Functional Connectivity Variability in Posttraumatic Stress Disorder: A Resting-State fMRI Study

    Get PDF
    Posttraumatic stress disorder (PTSD) is a psychiatric condition that can emerge after exposure to an exceedingly traumatic event. Previous neuroimaging studies have indicated that PTSD is characterized by aberrant resting-state functional connectivity (FC). However, few existing studies on PTSD have examined dynamic changes in resting-state FC related to network formation, interaction, and dissolution over time. In this study, we compared the dynamic resting-state local and large-scale FC between PTSD patients (n = 22) and healthy controls (HC; n = 22; conducted as standard deviation in resting-state local and large-scale FC over a series of sliding windows). Local dynamic FC was examined by calculating the dynamic regional homogeneity (dReHo), and large-scale dynamic FC (dFC) was investigated between regions with significant dReHo group differences. For the PTSD patients, we also investigated the relationship between symptom severity and dFC/dReHo. Our results showed that PTSD patients were characterized by I) increased dynamic (more variable) dReHo in left precuneus (PCu); II) increased dynamic (more variable) dFC between the left PCu and left insula; and III) decreased dFC between left PCu and left inferior parietal lobe (IPL), and decreased dFC between left PCu and right PCu. However, there is no significant correlation between the clinical indicators and dReHo/dFC after the family-wise-error (FWE) correction. These findings provided the initial evidence that PTSD is characterized by aberrant patterns of fluctuating communication within brain system such as the default mode network (DMN) and among different brain systems such as the salience network and the DMN

    Proteomic analysis of elite soybean Jidou17 and its parents using iTRAQ-based quantitative approaches

    Get PDF
    BACKGROUND: Derived from Hobbit as the female parent and Zao5241 as the male parent, the elite soybean cultivar Jidou17 is significantly higher yielding and shows enhanced qualities and stronger resistance to non-biological stress than its parents. The purpose of this study is to understand the difference in protein expression patterns between Jidou17 and its parental strains and to evaluate the parental contributions to its elite traits. RESULTS: Leaves (14 days old) from Jidou17 and its parental cultivars were analysed for differential expressed proteins using an iTRAQ-based (isobaric tags for relative and absolute quantitation) method. A total of 1269 proteins was detected, with 141 and 181 proteins in Jidou17 differing from its female and male parent, respectively. Functional classification and an enrichment analysis based on biological functions, biological processes, and cellular components revealed that all the differential proteins fell into many functional categories but that the number of proteins varied greatly for the different categories, with enrichment in specific categories. A pathway analysis indicated that the differentiated proteins were mainly classified into the ribosome assembly pathway. Protein expression clustering results showed that the expression profiles between Jidou17 and its female parent Hobbit were more similar than those between Jidou17 and its male parent Zao5241 and between the two parental strains. Therefore, the female parent Hobbit contributed more to the Jidou17 genotype. CONCLUSIONS: This study applied a proven technique to study proteomics in 14-day-old soybean leaves and explored the depth and breadth of soybean protein research. The results provide new data for further understanding the mechanisms of elite cultivar development

    Abnormal Topology of the Structural Connectome in the Limbic Cortico-Basal-Ganglia Circuit and Default-Mode Network Among Primary Insomnia Patients

    Get PDF
    Purpose: Primary insomnia (PI) is the second most common mental disorder. However, the topologic alterations in structural brain connectome in patients with PI remain largely unknown.Methods: A total of 44 PI patients and 46 age-, gender-, and education level matched healthy control (HC) participants were recruited in this study. Diffusion tensor imaging (DTI) and resting state MRI were used to construct structural connectome for each participant, and the network parameters were employed by non-parametric permutations to evaluate the significant differences between the two groups. Relationships between abnormal network metrics and clinical characteristics, including the disease duration, the Pittsburgh Sleep Quality Index (PSQI), the Insomnia Severity Index (ISI), the Self-Rating Anxiety Scale (SAS), and the Self-Rating Depression Scale (SDS), were investigated with Spearmanā€™s correlation analysis in PI patients.Results: PI patients demonstrated small-world architecture with lower global (P = 0.005) and local (P = 0.035) efficiencies compared with the HC group. The unique hub nodal properties in PI patients were mainly in the right limbic cortico-basal-ganglia circuit. Five disrupted subnetworks in PI patients were observed in the limbic cortico-basal-ganglia circuit and left default-mode networks (DMN) (P < 0.05, NBS corrected). Moreover, most unique hub nodal properties in the right limbic cortico-basal-ganglia circuit were significantly correlated with disease duration, and clinical characteristics (SAS, SDS, ISI scores) in PI processing.Conclusion: These findings suggested the abnormal anatomical network architecture may be closely linked to clinical characteristics in PI. The study provided novel insights into the neural substrates underlying symptoms and neurophysiologic mechanisms of PI

    Distribution, sources and health risk of PAHs in urban air-conditioning dust from Hefei, East China

    No full text
    In recent decades, indoor air quality (IAQ) has become one of the most important human health issues. The potential properties and potential health hazards of polycyclic aromatic hydrocarbons (PAHs) are associated with their long-term residues, bioaccumulation and semivolatility, and they can also be transferred through a variety of media, such as the atmosphere, water and soil. Dust particles from indoor and outdoor emission sources adhere to A-C filters and can represent air quality to a certain extent. However, few studies have focused on PAHs in A-C filter dust in Hefei, China. In this study, 16 PAHs were selected, dust samples were collected from A-C filters from three different functional districts, and GC-MS analysis of the samples was performed. The concentration of the Sigma 16PAHs ranged from 7.34 to 326.84 mu g g(-1), 5.07-15.34 mu g g(-1), 4.09-47.26 mu g g(-1) and 0.97-13.38 mu g g(-1) in dust samples from the Administrative District (AD), Industrial District (ID), Commercial District (CD) and Outdoors (OD), respectively. The total PAH concentration in A-C dust was much higher than that in dust deposited outdoors in the urban area. The percentage of 5-6 ring PAHs accounted for more than 70% of the Sigma 16PAHs, which shows that the PAHs in A-C dust mainly come from pyrolysis rather than a diagenetic source. Principal component analysis (PCA) and diagnostic ratios were used in a source analysis, and the results indicated that the main PAHs emission sources in the different functional districts were coal, wood and biomass combustion. The incremental lifetime cancer risk (ILCR) values indicated a medium to high potential carcinogenic risk for adults and children exposed to dust with PAHs. Particularly, skin contact and ingestion of carcinogenic PAHs from dust are the major exposure pathways and present an exposure risk that is four to five orders of magnitude higher than the risk of inhalation

    Aberrant single-subject morphological cerebellar connectome in chronic insomnia

    No full text
    Background: To systematically investigate the topological organisation of morphological networks of the cerebellum using structural MRI and examine their clinical relevance in chronic insomnia (CI). Methods: One hundred and one patients with CI and 102 healthy controls (HCs) were recruited in this study. Individual morphological networks of the cerebellum were constructed based on regional grey matter volume, and topologically characterised using weighted graph theory-based network approaches. Between-group comparisons were performed using permutation tests, and Spearmanā€™s correlation was used to examine the relationships between topological alterations and clinical variables. Results: Compared with HCs, patients with CI exhibited a lower normalised clustering coefficient. Locally, CI patients exhibited lower nodal efficiency in the cerebellar lobule VIIb and vermis regions, but higher nodal efficiency in the right cerebellar lobule VIIIa regions. No correlations were observed between network alterations and clinical variables. Conclusions: Individual morphological network analysis provides a new strategy for investigating cerebellar morphometric changes in CI, and our findings may have important implications in establishing diagnostic and categorical biomarkers

    Electron reflux dynamics in relativistically transparent plasma

    No full text
    The electron re-injection effect has revealed the great probability rate of photon generation due to the head-on collision between relativistic electrons and laser. We study the electron re-injection dynamics when the ultra-intense laser irradiates the near-critical-density plasma and successfully controls the photon radiation by means of the transversely tailored plasma. Starting from the relativistic corrected ponderomotive force, the critical strength of the laser field required by the refluxing effect is theoretically obtained. Then, the theoretical description of the wavefront formed by electron refluxing is given via plugging in the difference in the transverse phase velocity of the plasma wave. Simulation results display a curved surface of the refluxing electrons, which are in good agreement with the calculation results stemming from the physics model. The re-built phase space of the refluxing electrons illustrates that they gain energy mainly from the longitudinal electrostatic field on the re-injection path. Despite the energy of the refluxing electron being relatively low, it could radiate more photons via more efficient non-linear Compton scattering than the electron being accelerated in the positive direction. Furthermore, we employ a transverse density profile in the plasma and successfully achieve control of the electron re-injection effect and the properties of the resultant photons as well. Simulation results exhibit that overcritical electron beams are successively re-injected from the plasma density peaks. These backward electrons emit photons along the two maximal plasma densities as they collide with the laser pulse. Although the quality of the photons is not improved, their spatial distribution is changed, which is a big step toward manipulating light sources
    corecore