173 research outputs found

    Single top partner production in the Higgs to diphoton channel in the Littlest Higgs Model with TT-parity

    Full text link
    The top partner as a hallmark of the Littlest Higgs model with TT-parity (LHT model) has been extensively searched for during the Large Hadron Collider (LHC) Run-1. With the increasing mass limits on the top partner, the single production of the top partner will be dominant over the pair production. Under the constraints from the Higgs data, the electroweak precision observables and RbR_b, we find that the mass of TT-even top partner (T+T_+) has to be heavier than 730 GeV. Then, we investigate the observability of the single TT-even top partner production through the process pp→T+jpp \to T_+ j with the sequent decay T+→thT_+ \to th in the di-photon channel in the LHT model at the LHC. We find that the mass of T+T_+ can be excluded up to 800 GeV at 2σ2\sigma level at 14 TeV LHC with the integrated luminosity L=3{\cal L}=3 ab−1^{-1}

    Closing up a light stop window in natural SUSY at LHC

    Get PDF
    Top squark (stop) plays a key role in the radiative stability of the Higgs boson mass in supersymmetry (SUSY). The LHC searches for stop have made a great progress and tightly constrained the stop mass during Run-1. In this work, we use the LHC Run-1 data to determine the lower mass limit of the right-handed stop in a natural SUSY scenario, where the higgsinos χ~1,20\tilde{\chi}^0_{1,2} and χ~1±\tilde{\chi}^\pm_{1} are light and nearly degenerate. We find that the stop mass has been excluded up to 430 GeV for mχ~10≲250m_{\tilde{\chi}^0_1} \lesssim 250 GeV and to 540 GeV for mχ~10≃100m_{\tilde{\chi}^0_1} \simeq 100 GeV by the Run-1 SUSY searches for 2b+ETmiss2b+E^{miss}_T and 1ℓ+jets+ETmiss1\ell+jets+E^{miss}_T, respectively. In a small strip of parameter space with mχ~10≳190m_{\tilde{\chi}^0_1} \gtrsim 190 GeV, the stop mass can still be as light as 210 GeV and compatible with the Higgs mass measurement and the monojet bound. The 14 TeV LHC with a luminosity of 20 fb−1^{-1} can further cover such a light stop window by monojet and 2b+ETmiss2b+E^{miss}_T searches and push the lower bound of the stop mass to 710 GeV. We also explore the potential to use the Higgs golden ratio, Dγγ=σ(pp→h→γγ)/σ(pp→h→ZZ∗→4ℓ±)D_{\gamma\gamma}=\sigma(pp \to h \to \gamma\gamma)/\sigma(pp \to h \to ZZ^* \to4\ell^\pm), as a complementary probe for the light and compressed stop. If this golden ratio can be measured at percent level at the high luminosity LHC (HL-LHC) or future e+e−e^+e^- colliders, the light stop can be excluded for most of the currently allowed parameter region.Comment: Discussions added, version accepted by Phys. Lett.

    Study of the adsorption of Co(II) on the chitosan-hydroxyapatite

    Get PDF
    The adsorption of cobalt ions (Co2+) from aqueous solution onto chitosan-hydroxyapatite composite is investigated in this study. The effects of adsorption time, initial concentration, temperature, and pH are studied in details. Kinetics and thermodynamics of the adsorption of Co2+ onto the chitosan-hydroxyapatite are also investigated and the adsorption kinetics is found to follow the pseudo-second-order model with an activation energy (Ea) of 10.73 kJ/mol. Thermodynamic studies indicates that the adsorption follows the Langmuir adsorption equation. The value of entropy change (∆Sө) and enthalpy change (∆Hө) are found to be 83.50 and 18.09 kJ/mol, respectively. The Gibbs free energy change (∆Gө) is found to be negative at all fives temperatures, demonstrating that the adsorption process is spontaneous and endothermic.

    Design and Synthesis of Bio-Based High-Performance Trioxazine Benzoxazine Resin via Natural Renewable Resources

    Get PDF
    A new fully biobased trioxazine benzoxazine is synthesized by reacting resveratrol, furfurylamine, and paraformaldehyde via the Mannich condensation reaction. The chemical structure of this biobenzoxazine is characterized by 1H and 13C nuclear magnetic resonance and Fourier transform infrared (FT-IR) spectroscopies. 1H-1H nuclear Overhauser effect spectroscopy is utilized to unambiguously identify the isomer obtained. Monomer polymerization is investigated by differential scanning calorimetry and in situ FT-IR. Thermal stability of the fully polymerized polybenzoxazine is evaluated by thermogravimetric analysis, and flammability is assessed by microscale combustion calorimetry. The biothermoset obtained shows high thermal stability and low flammability, Td10 of 403 °C and char yield of 64%, respectively, low heat release capacity (54 J/gK), and low total heat release (9.3 KJ/g), thus exhibiting self-extinguishing and nonignitable properties. Consequently, this new fully biobased trioxazine benzoxazine and its corresponding polybenzoxazine possess excellent processability and thermal properties, suggesting great potential toward high-performance and fire-resistant materials.Fil: Zhang, Kan. Jiangsu University; ChinaFil: Han, Mengchao. Jiangsu University; ChinaFil: Liu, Yuqi. Jiangsu University; ChinaFil: Froimowicz, Pablo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Tecnología en Polímeros y Nanotecnología. Universidad de Buenos Aires. Facultad de Ingeniería. Instituto de Tecnología en Polímeros y Nanotecnología; Argentin

    Nomogram combining clinical and radiological characteristics for predicting the malignant probability of solitary pulmonary nodules measuring ≤ 2 cm

    Get PDF
    BackgroundAt present, how to identify the benign or malignant nature of small (≤ 2 cm) solitary pulmonary nodules (SPN) are an urgent clinical challenge. This retrospective study aimed to develop a clinical prediction model combining clinical and radiological characteristics for assessing the probability of malignancy in SPNs measuring ≤ 2 cm.MethodIn this study, we included patients with SPNs measuring ≤ 2 cm who underwent pulmonary resection with definite pathology at Qilu Hospital of Shandong University from January 2020 to December 2021. Clinical features, preoperative biomarker results, and computed tomography characteristics were collected. The enrolled patients were randomized at a ratio of 7:3 into a training cohort of 775 and a validation cohort of 331. The training cohort was used to construct the predictive model, while the validation cohort was used to test the model independently. Univariate and multivariate logistic regression analyses were performed to identify independent risk factors. The prediction model and nomogram were established based on the independent risk factors. The receiver operating characteristic (ROC) curve was used to evaluate the identification ability of the model. The calibration power was evaluated using the Hosmer–Lemeshow test and calibration curve. The clinical utility of the nomogram was also assessed by decision curve analysis (DCA).ResultA total of 1,106 patients were included in this study. Among them, the malignancy rate of SPNs was 85.08% (941/1,106). We finally identified the following six independent risk factors by logistic regression: age, carcinoembryonic antigen, nodule shape, calcification, maximum diameter, and consolidation-to-tumor ratio. The area under the ROC curve (AUC) for the training cohort was 0.764 (95% confidence interval [CI]: 0.714–0.814), and the AUC for the validation cohort was 0.729 (95% CI: 0.647–0.811), indicating that the prediction accuracy of nomogram was relatively good. The calibration curve of the predictive model also demonstrated a good calibration in both cohorts. DCA proved that the clinical prediction model was useful in clinical practice.ConclusionWe developed and validated a predictive model and nomogram for estimating the probability of malignancy in SPNs measuring ≤ 2 cm. With the application of predictive models, thoracic surgeons can make more rational clinical decisions while avoiding overtreatment and wasting medical resources
    • …
    corecore