15,707 research outputs found

    A Universal Receiver for Uplink NOMA Systems

    Full text link
    Given its capability in efficient radio resource sharing, non-orthogonal multiple access (NOMA) has been identified as a promising technology in 5G to improve the system capacity, user connectivity, and scheduling latency. A dozen of uplink NOMA schemes have been proposed recently and this paper considers the design of a universal receiver suitable for all potential designs of NOMA schemes. Firstly, a general turbo-like iterative receiver structure is introduced, under which, a universal expectation propagation algorithm (EPA) detector with hybrid parallel interference cancellation (PIC) is proposed (EPA in short). Link-level simulations show that the proposed EPA receiver can achieve superior block error rate (BLER) performance with implementation friendly complexity and fast convergence, and is always better than the traditional codeword level MMSE-PIC receiver for various kinds of NOMA schemes.Comment: This paper has been accepted by IEEE/CIC International Conference on Communications in China (ICCC 2018). 5 pages, 4 figure

    Turbo-like Iterative Multi-user Receiver Design for 5G Non-orthogonal Multiple Access

    Full text link
    Non-orthogonal multiple access (NoMA) as an efficient way of radio resource sharing has been identified as a promising technology in 5G to help improving system capacity, user connectivity, and service latency in 5G communications. This paper provides a brief overview of the progress of NoMA transceiver study in 3GPP, with special focus on the design of turbo-like iterative multi-user (MU) receivers. There are various types of MU receivers depending on the combinations of MU detectors and interference cancellation (IC) schemes. Link-level simulations show that expectation propagation algorithm (EPA) with hybrid parallel interference cancellation (PIC) is a promising MU receiver, which can achieve fast convergence and similar performance as message passing algorithm (MPA) with much lower complexity.Comment: Accepted by IEEE 88th Vehicular Technology Conference (IEEE VTC-2018 Fall), 5 pages, 6 figure

    Charge-Density-Wave Transitions of Dirac Fermions Coupled to Phonons

    Full text link
    The spontaneous generation of charge-density-wave order in a Dirac fermion system via the natural mechanism of electron-phonon coupling is studied in the framework of the Holstein model on the honeycomb lattice. Using two independent and unbiased quantum Monte Carlo methods, the phase diagram as a function of temperature and coupling strength is determined. It features a quantum critical point as well as a line of thermal critical points. Finite-size scaling appears consistent with fermionic Gross-Neveu-Ising universality for the quantum phase transition, and bosonic Ising universality for the thermal phase transition. The critical temperature has a maximum at intermediate couplings. Our findings motivate experimental efforts to identify or engineer Dirac systems with sufficiently strong and tunable electron-phonon coupling.Comment: 4+3 pages, 4+2 figure

    3-(4-Hydroxy­phenyl­imino)indolin-2-one

    Get PDF
    In the title compound, C14H10N2O2, the dihedral angle between the indole and benzene rings is 61.63 (4)°. In the crystal structure, centrosymmetrically related mol­ecules are linked into dimers by N—H⋯O hydrogen bonds, generating rings of graph-set motif R 2 2(8). The dimers are further connected into a three-dimensional network by O—H⋯O and C—H⋯O hydrogen bonds
    • …
    corecore