5,644 research outputs found
Generating Giant and Tunable Nonlinearity in a Macroscopic Mechanical Resonator from Chemical Bonding Force
Nonlinearity in macroscopic mechanical system plays a crucial role in a wide
variety of applications, including signal transduction and processing,
synchronization, and building logical devices. However, it is difficult to
generate nonlinearity due to the fact that macroscopic mechanical systems
follow the Hooke's law and response linearly to external force, unless strong
drive is used. Here we propose and experimentally realize a record-high
nonlinear response in macroscopic mechanical system by exploring the
anharmonicity in deforming a single chemical bond. We then demonstrate the
tunability of nonlinear response by precisely controlling the chemical bonding
interaction, and realize a cubic elastic constant of \mathversion{bold}, many orders of magnitude larger in strength
than reported previously. This enables us to observe vibrational bistate
transitions of the resonator driven by the weak Brownian thermal noise at 6~K.
This method can be flexibly applied to a variety of mechanical systems to
improve nonlinear responses, and can be used, with further improvements, to
explore macroscopic quantum mechanics
Potassium {4-[(3S,6S,9S)-3,6-dibenzyl-9-isopropyl-4,7,10-trioxo-11–oxa-2,5,8-triazadodecyl]phenyl}trifluoroborate
[[abstract]]The reported compound 4 was synthesized and fully characterized by 1H NMR, 13C NMR, 11B NMR, 19F NMR, and high resolution mass spectrometry.[[booktype]]電子版[[countrycodes]]CH
Tet oncogene family member 2 gene alterations in childhood acute myeloid leukemia
Background/PurposeMutations in the tet oncogene family member 2 gene (TET2) are frequently found in adult patients with acute myeloid leukemia (AML). Reports of TET2 mutations in children are limited. We assessed the prevalence of TET2 mutations in Taiwanese children with AML and analyzed their prognosis.MethodsBetween 1997 and 2010, a total of 69 consecutive children with AML were enrolled at the National Taiwan University Hospital. The analysis for TET2 mutations was performed using direct sequencing. Clinical characteristics and overall survival (OS) were compared between patients with and without TET2 alterations.ResultsIntronic and missense mutations were identified. No nonsense or frameshift mutations were observed. Two putative disease-causing missense mutations (S609C and A1865G) were identified in one patient. We estimated the prevalence of TET2 mutations in the current patient population to be 1.4%. The most common polymorphism was I1762V (45%), followed by V218M (12%), P29R (6%), and F868L (6%). Patients with polymorphism I1762V had an increased 10-year survival rate compared with patients without I1762V (48.4% vs. 25.7%, p = 0.049) by Chi-square test; OS was not different when examined using the Kaplan–Meier method (p = 0.104).ConclusionThe prevalence of TET2 mutations in children with AML compared with adults with AML was lower and less complex. Patient prognosis associated with TET2 mutations in children requires further investigation
The Space-Jump Model of the Movement of Tumor Cells and Healthy Cells
We establish the interaction model of two cell populations following the concept of the random-walk, and assume the cell movement is constrained by space limitation primarily. Furthermore, we analyze the model to obtain the behavior of two cell populations as time is closed to initial state and far into the future
Exploring the dark matter inelastic frontier with 79.6 days of PandaX-II data
We report here the results of searching for inelastic scattering of dark
matter (initial and final state dark matter particles differ by a small mass
splitting) with nucleon with the first 79.6-day of PandaX-II data (Run 9). We
set the upper limits for the spin independent WIMP-nucleon scattering cross
section up to a mass splitting of 300 keV/c at two benchmark dark matter
masses of 1 and 10 TeV/c.Comment: 5 pages, 6 figure
Low-mass dark matter search results from full exposure of PandaX-I experiment
We report the results of a weakly-interacting massive particle (WIMP) dark
matter search using the full 80.1\;live-day exposure of the first stage of the
PandaX experiment (PandaX-I) located in the China Jin-Ping Underground
Laboratory. The PandaX-I detector has been optimized for detecting low-mass
WIMPs, achieving a photon detection efficiency of 9.6\%. With a fiducial liquid
xenon target mass of 54.0\,kg, no significant excess event were found above the
expected background. A profile likelihood analysis confirms our earlier finding
that the PandaX-I data disfavor all positive low-mass WIMP signals reported in
the literature under standard assumptions. A stringent bound on the low mass
WIMP is set at WIMP mass below 10\,GeV/c, demonstrating that liquid xenon
detectors can be competitive for low-mass WIMP searches.Comment: v3 as accepted by PRD. Minor update in the text in response to
referee comments. Separating Fig. 11(a) and (b) into Fig. 11 and Fig. 12.
Legend tweak in Fig. 9(b) and 9(c) as suggested by referee, as well as a
missing legend for CRESST-II legend in Fig. 12 (now Fig. 13). Same version as
submitted to PR
- …
