2,112 research outputs found

    All-Printed, Stretchable Zn-Ag2O Rechargeable Battery via Hyperelastic Binder for Self-Powering Wearable Electronics

    Get PDF
    While several stretchable batteries utilizing either deterministic or random composite architectures have been described, none have been fabricated using inexpensive printing technologies. In this study, the authors printed a highly stretchable, zinc-silver oxide (Zn-Ag2O) battery by incorporating polystyrene-block-polyisoprene-block-polystyrene (SIS) as a hyperelastic binder for custom-made printable inks. The remarkable mechanical properties of the SIS binder lead to an all-printed, stretchable Zn-Ag2O rechargeable battery with a ≈2.5 mA h cm−2 reversible capacity density even after multiple iterations of 100% stretching. This battery offers the highest reversible capacity and discharge current density for intrinsically stretchable batteries reported to date. The electrochemical and mechanical properties are characterized under different strain conditions. The new stress-enduring printable inks pave ways for further developing stretchable electronics for the wide range of wearable applications

    Nanoscale strain mapping in battery nanostructures

    Get PDF
    Coherent x-ray diffraction imaging is used to map the local three dimensional strain inhomogeneity and electron density distribution of two individual LiNi0.5Mn1.5O4-δ cathode nanoparticles in both ex-situ and in-situ environments. Our reconstructed images revealed a maximum strain of 0.4%. We observed different variations in strain inhomogeneity due to multiple competing effects. The compressive/tensile component of the strain is connected to the local lithium content and, on the surface, interpreted in terms of a local Jahn-Teller distortion of Mn 3+. Finally, the measured strain distributions are discussed in terms of their impact on competing theoretical models of the lithiation process. © 2014 AIP Publishing LLC

    Reciprocal salt flux growth of LiFePO4 single crystals with controlled defect concentrations

    Get PDF
    Improved methods for the flux growth of single crystals of the important battery material LiFePO4 have been developed, allowing the facile preparation of single crystals up to 1 cm across with well-developed facets at relatively low temperatures. The structural characterization of these samples by both powder X-ray diffraction and single crystal diffraction (X-ray and neutron) indicates that the samples are typically stoichiometric with a very low concentration of Fe defects on the Li site, though crystals with larger concentrations of defects can be specifically grown using Fe-rich fluxes. These defects occur through the formation of a Fe-rich (Li1-2xFe x)FePO4 partial solid solution, in contrast to the antisite defects more commonly discussed in the literature which would preserve the ideal LiFePO4 stoichiometry. The LiFePO4 defects are shown to be sarcopside-like (2 Li+ → Fe2+ + vacancy) based on compositions refined from single crystal diffraction data, the observed dependence of unit cell parameters on defect concentration, and their observed phase behavior (defects only appear in growths from fluxes which are Fe-rich relative to stoichiometric LiFePO4). The distribution of defects has been studied by aberration corrected scanning transmission electron microscopy and was found to be highly inhomogenous, suggesting that defect-containing crystals may consist of endotaxial intergrowths of olivine LiFePO4 and sarcopside Fe3(PO4)2 in a manner that minimizes the detrimental influence of FeLi defects on the rate of Li-ion transport within crystallites. © 2013 American Chemical Society

    Nucleation of dislocations and their dynamics in layered oxide cathode materials during battery charging

    Get PDF
    Defects and their interactions in crystalline solids often underpin material properties and functionality as they are decisive for stability, result in enhanced diffusion, and act as a reservoir of vacancies. Recently, lithium-rich layered oxides have emerged among the leading candidates for the next-generation energy storage cathode material, delivering 50 % excess capacity over commercially used compounds. Oxygen-redox reactions are believed to be responsible for the excess capacity, however, voltage fading has prevented commercialization of these new materials. Despite extensive research the understanding of the mechanisms underpinning oxygen-redox reactions and voltage fade remain incomplete. Here, using operando three-dimensional Bragg coherent diffractive imaging, we directly observe nucleation of a mobile dislocation network in nanoparticles of lithium-rich layered oxide material. Surprisingly, we find that dislocations form more readily in the lithium-rich layered oxide material as compared with a conventional layered oxide material, suggesting a link between the defects and the anomalously high capacity in lithium-rich layered oxides. The formation of a network of partial dislocations dramatically alters the local lithium environment and contributes to the voltage fade. Based on our findings we design and demonstrate a method to recover the original high voltage functionality. Our findings reveal that the voltage fade in lithium-rich layered oxides is reversible and call for new paradigms for improved design of oxygen-redox active materials

    Superaerophobic graphene nano-hills for direct hydrazine fuel cells

    Get PDF
    Hydrazine fuel-cell technology holds great promise for clean energy, not only because of the greater energy density of hydrazine compared to hydrogen but also due to its safer handling owing to its liquid state. However, current technologies involve the use of precious metals (such as platinum) for hydrazine oxidation, which hinders the further application of hydrazine fuel-cell technologies. In addition, little attention has been devoted to the management of gas, which tends to become stuck on the surface of the electrode, producing overall poor electrode efficiencies. In this study, we utilized a nano-hill morphology of vertical graphene, which efficiently resolves the issue of the accumulation of gas bubbles on the electrode surface by providing a nano-rough-edged surface that acts as a superaerophobic electrode. The growth of the vertical graphene nano-hills was achieved and optimized by a scalable plasma-enhanced chemical vapor deposition method. The resulting metal-free graphene-based electrode showed the lowest onset potential (-0.42 V vs saturated calomel electrode) and the highest current density of all the carbon-based materials reported previously for hydrazine oxidation
    corecore