2,112 research outputs found
Recommended from our members
Thin Solid Electrolyte Layers Enabled by Nanoscopic Polymer Binding
To achieve high-energy all-solid-state batteries (ASSBs), solid-state electrolytes (SE) must be thin, mechanically robust, and possess the ability to form low resistance interfaces with electrode materials. Embedding an inorganic SE into an organic polymer combines the merits of high conductivity and flexibility. However, the performance of such an SE-in-polymer matrix (SEPM) is highly dependent on the microstructure and interactions between the organic and inorganic components. We report on the synthesis of a free-standing, ultrathin (60 μm) SEPM from a solution of lithium polysulfide, phosphorus sulfide, and ethylene sulfide (ES), where the polysulfide triggers the in situ polymerization of ES and the formation of Li3PS4. Reactant ratios were optimized to achieve a room-temperature conductivity of 2 × 10-5 S cm-1. Cryogenic electron microscopy confirmed a uniform nanoscopic distribution of β-Li3PS4 and PES (polyethylene sulfide). This work presents a facile route to the scalable fabrication of ASSBs with promising cycling performance and low electrolyte loading
Recommended from our members
Enabling Thin and Flexible Solid-State Composite Electrolytes by the Scalable Solution Process
All solid-state batteries (ASSBs) have the potential to deliver higher energy densities, wider operating temperature range, and improved safety compared with today's liquid-electrolyte-based batteries. However, of the various solid-state electrolyte (SSE) classes - polymers, sulfides, or oxides - none alone can deliver the combined properties of ionic conductivity, mechanical, and chemical stability needed to address scalability and commercialization challenges. While promising strategies to overcome these include the use of polymer/oxide or sulfide composites, there is still a lack of fundamental understanding between different SSE-polymer-solvent systems and its selection criteria. Here, we isolate various SSE-polymer-solvent systems and study their molecular level interactions by combining various characterization tools. With these findings, we introduce a suitable Li7P3S11SSE-SEBS polymer-xylene solvent combination that significantly reduces SSE thickness (∼50 μm). The SSE-polymer composite displays high room temperature conductivity (0.7 mS cm-1) and good stability with lithium metal by plating and stripping over 2000 h at 1.1 mAh cm-2. This study suggests the importance of understanding fundamental SSE-polymer-solvent interactions and provides a design strategy for scalable production of ASSBs
All-Printed, Stretchable Zn-Ag2O Rechargeable Battery via Hyperelastic Binder for Self-Powering Wearable Electronics
While several stretchable batteries utilizing either deterministic or random composite architectures have been described, none have been fabricated using inexpensive printing technologies. In this study, the authors printed a highly stretchable, zinc-silver oxide (Zn-Ag2O) battery by incorporating polystyrene-block-polyisoprene-block-polystyrene (SIS) as a hyperelastic binder for custom-made printable inks. The remarkable mechanical properties of the SIS binder lead to an all-printed, stretchable Zn-Ag2O rechargeable battery with a ≈2.5 mA h cm−2 reversible capacity density even after multiple iterations of 100% stretching. This battery offers the highest reversible capacity and discharge current density for intrinsically stretchable batteries reported to date. The electrochemical and mechanical properties are characterized under different strain conditions. The new stress-enduring printable inks pave ways for further developing stretchable electronics for the wide range of wearable applications
Nanoscale strain mapping in battery nanostructures
Coherent x-ray diffraction imaging is used to map the local three dimensional strain inhomogeneity and electron density distribution of two individual LiNi0.5Mn1.5O4-δ cathode nanoparticles in both ex-situ and in-situ environments. Our reconstructed images revealed a maximum strain of 0.4%. We observed different variations in strain inhomogeneity due to multiple competing effects. The compressive/tensile component of the strain is connected to the local lithium content and, on the surface, interpreted in terms of a local Jahn-Teller distortion of Mn 3+. Finally, the measured strain distributions are discussed in terms of their impact on competing theoretical models of the lithiation process. © 2014 AIP Publishing LLC
Reciprocal salt flux growth of LiFePO4 single crystals with controlled defect concentrations
Improved methods for the flux growth of single crystals of the important battery material LiFePO4 have been developed, allowing the facile preparation of single crystals up to 1 cm across with well-developed facets at relatively low temperatures. The structural characterization of these samples by both powder X-ray diffraction and single crystal diffraction (X-ray and neutron) indicates that the samples are typically stoichiometric with a very low concentration of Fe defects on the Li site, though crystals with larger concentrations of defects can be specifically grown using Fe-rich fluxes. These defects occur through the formation of a Fe-rich (Li1-2xFe x)FePO4 partial solid solution, in contrast to the antisite defects more commonly discussed in the literature which would preserve the ideal LiFePO4 stoichiometry. The LiFePO4 defects are shown to be sarcopside-like (2 Li+ → Fe2+ + vacancy) based on compositions refined from single crystal diffraction data, the observed dependence of unit cell parameters on defect concentration, and their observed phase behavior (defects only appear in growths from fluxes which are Fe-rich relative to stoichiometric LiFePO4). The distribution of defects has been studied by aberration corrected scanning transmission electron microscopy and was found to be highly inhomogenous, suggesting that defect-containing crystals may consist of endotaxial intergrowths of olivine LiFePO4 and sarcopside Fe3(PO4)2 in a manner that minimizes the detrimental influence of FeLi defects on the rate of Li-ion transport within crystallites. © 2013 American Chemical Society
Recommended from our members
Local structure adaptability through multi cations for oxygen redox accommodation in Li-Rich layered oxides
Stable lattice oxygen redox (l-OR) is the key enabler for achieving attainable high energy density in Li-rich layered oxide cathode materials for Li-ion batteries. However, the unique local structure response to oxygen redox in these materials, resulting in energy inefficiency and hysteresis, still remains elusive, preventing their potential applications. By combining the state-of-the-art neutron pair distribution function with crystal orbital overlap analysis, we directly observe the distinct local structure adaption originated from the potential O–O chemical bonds. The structure adaptability is optimized based on the nature of multi transition metals in our model compound Li1.2Ni0.13Mn0.54Co0.13O2, which accommodates the oxygen redox and at the same time preserves the global layered structure. These findings not only advance the understanding of l-OR, but also provide new perspectives in the rational design of high-energy-density cathode materials with reversible and stable l-OR
Nucleation of dislocations and their dynamics in layered oxide cathode materials during battery charging
Defects and their interactions in crystalline solids often underpin material
properties and functionality as they are decisive for stability, result in
enhanced diffusion, and act as a reservoir of vacancies. Recently, lithium-rich
layered oxides have emerged among the leading candidates for the
next-generation energy storage cathode material, delivering 50 % excess
capacity over commercially used compounds. Oxygen-redox reactions are believed
to be responsible for the excess capacity, however, voltage fading has
prevented commercialization of these new materials. Despite extensive research
the understanding of the mechanisms underpinning oxygen-redox reactions and
voltage fade remain incomplete. Here, using operando three-dimensional Bragg
coherent diffractive imaging, we directly observe nucleation of a mobile
dislocation network in nanoparticles of lithium-rich layered oxide material.
Surprisingly, we find that dislocations form more readily in the lithium-rich
layered oxide material as compared with a conventional layered oxide material,
suggesting a link between the defects and the anomalously high capacity in
lithium-rich layered oxides. The formation of a network of partial dislocations
dramatically alters the local lithium environment and contributes to the
voltage fade. Based on our findings we design and demonstrate a method to
recover the original high voltage functionality. Our findings reveal that the
voltage fade in lithium-rich layered oxides is reversible and call for new
paradigms for improved design of oxygen-redox active materials
Superaerophobic graphene nano-hills for direct hydrazine fuel cells
Hydrazine fuel-cell technology holds great promise for clean energy, not only because of the greater energy density of hydrazine compared to hydrogen but also due to its safer handling owing to its liquid state. However, current technologies involve the use of precious metals (such as platinum) for hydrazine oxidation, which hinders the further application of hydrazine fuel-cell technologies. In addition, little attention has been devoted to the management of gas, which tends to become stuck on the surface of the electrode, producing overall poor electrode efficiencies. In this study, we utilized a nano-hill morphology of vertical graphene, which efficiently resolves the issue of the accumulation of gas bubbles on the electrode surface by providing a nano-rough-edged surface that acts as a superaerophobic electrode. The growth of the vertical graphene nano-hills was achieved and optimized by a scalable plasma-enhanced chemical vapor deposition method. The resulting metal-free graphene-based electrode showed the lowest onset potential (-0.42 V vs saturated calomel electrode) and the highest current density of all the carbon-based materials reported previously for hydrazine oxidation
- …