18,741 research outputs found

    Comprehensive Characterization of the Transmitted/Founder env Genes From a Single MSM Cohort in China

    Get PDF
    Background: The men having sex with men (MSM) population has become one of the major risk groups for HIV-1 infection in China. However, the epidemiological patterns, function of the env genes, and autologous and heterologous neutralization activity in the same MSM population have not been systematically characterized. Methods: The env gene sequences were obtained by the single genome amplification. The time to the most recent common ancestor was estimated for each genotype using the Bayesian Markov Chain Monte Carlo approach. Coreceptor usage was determined in NP-2 cells. Neutralization was analyzed using Env pseudoviruses in TZM-bl cells. Results: We have obtained 547 full-length env gene sequences by single genome amplification from 30 acute/early HIV-1–infected individuals in the Beijing MSM cohort. Three genotypes (subtype B, CRF01_AE, and CRF07_BC) were identified and 20% of the individuals were infected with multiple transmitted/founder (T/F) viruses. The tight clusters of the MSM sequences regardless of geographic origins indicated nearly exclusive transmission within the MSM population and limited number of introductions. The time to the most recent common ancestor for each genotype was 10–15 years after each was first introduced in China. Disparate preferences for coreceptor usages among 3 genotypes might lead to the changes in percentage of different genotypes in the MSM population over time. The genotype-matched and genotype-mismatched neutralization activity varied among the 3 genotypes. Conclusions: The identification of unique characteristics for transmission, coreceptor usage, neutralization profile, and epidemic patterns of HIV-1 is critical for the better understanding of transmission mechanisms, development of preventive strategies, and evaluation of vaccine efficacy in the MSM population in China

    Finite density phase transition of QCD with Nf=4N_f=4 and Nf=2N_f=2 using canonical ensemble method

    Full text link
    In a progress toward searching for the QCD critical point, we study the finite density phase transition of Nf=4N_f = 4 and 2 lattice QCD at finite temperature with the canonical ensemble approach. We develop a winding number expansion method to accurately project out the particle number from the fermion determinant which greatly extends the applicable range of baryon number sectors to make the study feasible. Our lattice simulation was carried out with the clover fermions and improved gauge action. For a given temperature, we calculate the baryon chemical potential from the canonical approach to look for the mixed phase as a signal for the first order phase transition. In the case of Nf=4N_f=4, we observe an "S-shape" structure in the chemical potential-density plane due to the surface tension of the mixed phase in a finite volume which is a signal for the first order phase transition. We use the Maxwell construction to determine the phase boundaries for three temperatures below TcT_c. The intersecting point of the two extrapolated boundaries turns out to be at the expected first order transition point at TcT_c with μ=0\mu = 0. This serves as a check for our method of identifying the critical point. We also studied the Nf=2N_f =2 case, but do not see a signal of the mixed phase for temperature as low as 0.83 TcT_c.Comment: 28 pages, 11 figures,references added, final versio

    Lambda and Anti-Lambda Hypernuclei in Relativistic Mean-field Theory

    Full text link
    Several aspects about Λ\Lambda-hypernuclei in the relativistic mean field theory, including the effective Λ\Lambda-nucleon coupling strengths based on the successful effective nucleon-nucleon interaction PK1, hypernuclear magnetic moment and Λˉ\bar\Lambda-hypernuclei, have been presented. The effect of tensor coupling in Λ\Lambda-hypernuclei and the impurity effect of Λˉ\bar\Lambda to nuclear structure have been discussed in detail.Comment: 8 pages, 2 figures, Proceedings of the Sendai International Symposium "Strangeness in Nuclear and Hadronic Systems SENDAI08

    Matter loops corrected modified gravity in Palatini formulation

    Full text link
    Recently, corrections to the standard Einstein-Hilbert action are proposed to explain the current cosmic acceleration in stead of introducing dark energy. In the Palatini formulation of those modified gravity models, there is an important observation due to Arkani-Hamed: matter loops will give rise to a correction to the modified gravity action proportional to the Ricci scalar of the metric. In the presence of such term, we show that the current forms of modified gravity models in Palatini formulation, specifically, the 1/R gravity and lnR\ln R gravity, will have phantoms. Then we study the possible instabilities due to the presence of phantom fields. We show that the strong instability in the metric formulation of 1/R gravity indicated by Dolgov and Kawasaki will not appear and the decay timescales for the phantom fields may be long enough for the theories to make sense as effective field theory . On the other hand, if we change the sign of the modification terms to eliminate the phantoms, some other inconsistencies will arise for the various versions of the modified gravity models. Finally, we comment on the universal property of the Palatini formulation of the matter loops corrected modified gravity models and its implications.Comment: 11 pages, 1 figures, References adde

    Life cycle assessment of lithium nickel cobalt manganese oxide (NCM) batteries for electric passenger vehicles

    Get PDF
    This study evaluated and quantified the life cycle environmental impacts of lithium-ion power batteries (LIBs) for passenger electric vehicles to identify key stages that contribute to the overall environmental burden and to find ways to reduce this burden effectively. Primary data for the assessment were collected onsite from the two Chinese leading LIB suppliers, two leading cathode material producers and two battery recycling corporations from 2017 to 2019. Six environmental impact categories, including primary energy demand (PED), global warming potential (GWP), acidification potential (AP), photochemical oxidant creation potential (POCP), eutrophication potential (EP) and human toxicity potential (HTP), were considered in accordance with the ISO 14040/14044 standards. The results indicate that material preparation stage is the largest contributor to the LIB’s life cycle PED, GWP, AP, POCP, EP and HTP, with the cathode active material, wrought aluminum and electrolytes as the predominant contributors. In the production stage, vacuum drying and coating and drying are the two main processes for all the six impact categories. In the end-of-life stage, waste LIBs recycling could largely reduce the life cycle POCP and HTP. Sensitivity analysis results depict that replacing NCM 622 by NCM 811 as the cathode active material could increase all the six environmental impacts. We hope this study is helpful to reduce the uncertainties associated with the life cycle assessment of LIBs in existing literatures and to identify opportunities to improve the environmental performance of LIBs within the whole life cycle.This research was funded by the Key Projects of the National Natural Science Foundation of China (Grant No. 71734006)

    Flexural capacity and local buckling half-wavelength of high strength steel tubular beams under moment gradients: an experimental study

    Get PDF
    An experimental investigation into the effect of moment gradients on the flexural behaviour of hot-rolled high strength steel square hollow section (SHS) beams is presented in this paper. In total, 20 beam specimens in steel grades S690 and S770, and with cross-sections spanning from Class 2 to Class 4 based on the Eurocode 3 slenderness limits, were tested under three- and four-point bending. In the three-point bending tests, the beam spans were varied to achieve a range of moment gradients; the influence of different stiffening arrangements at the loading point was also considered. Local geometric imperfections were measured by means of 3D laser-scanning prior to testing and digital image correlation (DIC) was adopted to monitor the displacement and strain fields at critical regions and to assess the local buckling half-wavelengths of the test specimens for which a consistent measurement approach was proposed. The measured local buckling half-wavelengths were compared against the elastic local buckling half-wavelengths calculated using the finite strip method. It was observed that while the measured local buckling half-wavelengths remained approximately constant up to first yield, a significant reduction in half-wavelength was observed with increasing moment due to the non-uniform spread of plasticity. The comparisons also revealed that the local buckling half-wavelengths reduced with both the presence of moment gradients and intermediate stiffeners, with a new parameter proposed to quantify the local moment gradient. It was shown from the tests that the specimens subjected to moment gradients, despite the presence of shear, exhibited higher ultimate moment capacities (up to 10.5% for stiffened specimens and 3.4% for unstiffened specimens) than those subjected to uniform moments. This is attributed to the delay in the local buckling of the critical cross-section of beams under moment gradients due to the restraint provided by the less heavily stressed adjacent cross-sections

    Mutant reduction based on dominance relation for weak mutation testing

    Get PDF
    Context: As a fault-based testing technique, mutation testing is effective at evaluating the quality of existing test suites. However, a large number of mutants result in the high computational cost in mutation testing. As a result, mutant reduction is of great importance to improve the efficiency of mutation testing. Objective: We aim to reduce mutants for weak mutation testing based on the dominance relation between mutant branches. Method: In our method, a new program is formed by inserting mutant branches into the original program. By analyzing the dominance relation between mutant branches in the new program, the non-dominated one is obtained, and the mutant corresponding to the non-dominated mutant branch is the mutant after reduction. Results: The proposed method is applied to test ten benchmark programs and six classes from open-source projects. The experimental results show that our method reduces over 80% mutants on average, which greatly improves the efficiency of mutation testing. Conclusion: We conclude that dominance relation between mutant branches is very important and useful in reducing mutants for mutation testing
    corecore