23,914 research outputs found

    Error Function Attack of chaos synchronization based encryption schemes

    Full text link
    Different chaos synchronization based encryption schemes are reviewed and compared from the practical point of view. As an efficient cryptanalysis tool for chaos encryption, a proposal based on the Error Function Attack is presented systematically and used to evaluate system security. We define a quantitative measure (Quality Factor) of the effective applicability of a chaos encryption scheme, which takes into account the security, the encryption speed, and the robustness against channel noise. A comparison is made of several encryption schemes and it is found that a scheme based on one-way coupled chaotic map lattices performs outstandingly well, as judged from Quality Factor

    Optical interface states protected by synthetic Weyl points

    Full text link
    Weyl fermions have not been found in nature as elementary particles, but they emerge as nodal points in the band structure of electronic and classical wave crystals. Novel phenomena such as Fermi arcs and chiral anomaly have fueled the interest in these topological points which are frequently perceived as monopoles in momentum space. Here we report the experimental observation of generalized optical Weyl points inside the parameter space of a photonic crystal with a specially designed four-layer unit cell. The reflection at the surface of a truncated photonic crystal exhibits phase vortexes due to the synthetic Weyl points, which in turn guarantees the existence of interface states between photonic crystals and any reflecting substrates. The reflection phase vortexes have been confirmed for the first time in our experiments which serve as an experimental signature of the generalized Weyl points. The existence of these interface states is protected by the topological properties of the Weyl points and the trajectories of these states in the parameter space resembles those of Weyl semimetal "Fermi arcs surface states" in momentum space. Tracing the origin of interface states to the topological character of the parameter space paves the way for a rational design of strongly localized states with enhanced local field.Comment: 36 pages, 9 figures. arXiv admin note: text overlap with arXiv:1610.0434

    Study the Heavy Molecular States in Quark Model with Meson Exchange Interaction

    Full text link
    Some charmonium-like resonances such as X(3872) can be interpreted as possible D()D()D^{(*)}D^{(*)} molecular states. Within the quark model, we study the structure of such molecular states and the similar B()B()B^{(*)}B^{(*)} molecular states by taking into account of the light meson exchange (π\pi, η\eta, ρ\rho, ω\omega and σ\sigma) between two light quarks from different mesons

    Micromachined membrane particle filters

    Get PDF
    We report here several particle membrane filters (8 x 8 mm^2) with circular, hexagonal and rectangular through holes. By varying hole dimensions from 6 to 12 pm, opening factors from 4 to 45 % are achieved. In order to improve the filter robustness, a composite silicon nitride/Parylene membrane technology is developed. More importantly, fluid dynamic performance of the filters is also studied by both experiments and numerical simulations. It is found that the gaseous flow through the filters depends strongly on opening factors, and the measured pressure drops are much lower than that from numerical simulation using the Navier-Stokes equation. Interestingly, surface velocity slip can only account for a minor part of the discrepancy. This suggests that a very interesting topic for micro fluid mechanics research is identified

    Dynamical study of the possible molecular state X(3872) with the s-channel one gluon exchange interaction

    Full text link
    The recently observed X(3872) resonance, which is difficult to be assigned a conventional ccˉc\bar{c} charmonium state in the quark model, may be interpreted as a molecular state. Such a molecular state is a hidden flavor four quark state because of its charmonium-like quantum numbers. The s-channel one gluon exchange is an interaction which only acts in the hidden flavor multi-quark system. In this paper, we will study the X(3872) and other similiar hidden flavor molecular states in a quark model by taking into account of the s-channel one gluon exchange interaction

    JNK Signaling Confers Tolerance to Oxidative Stress and Extends Lifespan in Drosophila

    Get PDF
    AbstractChanges in the genetic makeup of an organism can extend lifespan significantly if they promote tolerance to environmental insults and thus prevent the general deterioration of cellular function that is associated with aging. Here, we introduce the Jun N-terminal kinase (JNK) signaling pathway as a genetic determinant of aging in Drosophila melanogaster. Based on expression profiling experiments, we demonstrate that JNK functions at the center of a signal transduction network that coordinates the induction of protective genes in response to oxidative challenge. JNK signaling activity thus alleviates the toxic effects of reactive oxygen species (ROS). In addition, we show that flies with mutations that augment JNK signaling accumulate less oxidative damage and live dramatically longer than wild-type flies. Our work thus identifies the evolutionarily conserved JNK signaling pathway as a major genetic factor in the control of longevity

    The correlation between C/O ratio, metallicity and the initial WD mass for SNe Ia

    Full text link
    In this paper, we want to check whether or not the carbon abundance can be affected by initial metallicity. We calculated a series of stellar evolution. We found that when Z0.02Z\leq0.02, the carbon abundance is almost independent of metallicity if it is plotted against the initial WD mass. However, when Z>0.02Z>0.02, the carbon abundance is not only a function of the initial WD mass, but also metallicity, i.e. for a given initial WD mass, the higher the metallicity, the lower the carbon abundance. Based on some previous studies, i.e. both a high metallicity and a low carbon abundance lead to a lower production of 56^{\rm 56}Ni formed during SN Ia explosion, the effects of the carbon abundance and the metallicity on the amount of 56^{\rm 56}Ni are enhanced by each other, which may account for the variation of maximum luminosity of SNe Ia, at least qualitatively. Considering that the central density of WD before supernova explosion may also play a role on the production of 56^{\rm 56}Ni and the carbon abundance, the metallicity and the central density are all determined by the initial parameters of progenitor system, i.e. the initial WD mass, metallicity, orbital period and secondary mass, the amount of 56^{\rm 56}Ni might be a function of the initial parameters. Then, our results might construct a bridge linking the progenitor model and the explosion model of SNe Ia.Comment: 7pages, 4 figures, accepted for publication in A&
    corecore